УДК 621.382.323

https://doi.org/10.32603/2071-8985-2023-16-6-20-28

Влияние ловушек на накопление подвижного заряда в МОП-структурах при термополевых обработках

О. В. Александров, Н. Н. Морозов[⊠]

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина), Санкт-Петербург, Россия

^I laughter-maiden@mail.ru

Аннотация. Разработана количественная модель влияния ловушек на параметры миграции подвижного заряда в подзатворном диэлектрике МОП-структур. Рассчитаны зависимости эффективных коэффициентов диффузии и энергии активации от концентрации ловушек, энергии связи ловушек с ионами, концентрации примеси и температуры термополевой обработки. Показано, что с увеличением концентрации ловушек накопление подвижного заряда вблизи межфазной границы Si-SiO $_2$ замедляется. С помощью представленной модели можно объяснить разброс в экспериментальных данных по диффузии ионов натрия в диоксиде кремния.

Ключевые слова: МОП-структура, подзатворный диэлектрик, подвижный ионный заряд, диффузия, термополевая обработка

Для цитирования: Александров О. В., Морозов Н. Н. Влияние ловушек на накопление подвижного заряда в МОП-структурах при термополевых обработках // Изв. СПбГЭТУ «ЛЭТИ». 2023. Т. 16, № 6. С. 20–28. doi: 10.32603/2071-8985-2023-16-6-20-28.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Original article

Influence of Traps on Mobile Charge Accumulation in MOS Structures in Thermal Field Treatments

O. V. Aleksandrov, N. N. Morozov[∞],

Saint Petersburg Electrotechnical University, Saint Petersburg, Russia

[™] laughter-maiden@mail.ru

Abstract. A quantitative model describing the influence of traps on the parameters of mobile charge migration in the gate dielectric of MOS structures is presented. The dependences of the effective diffusion coefficients and activation energy on trap accumulation, ion-trapping binding energy, impurity concentrations, and thermal field treatment temperatures are calculated. An increase in trap concentration was found to hamper mobile charge accumulation in the vicinity of the Si-SiO₂ interface. The presented model can be used to explain the scattering of experimental data on sodium ion diffusion in silicon dioxide.

Keywords: MOS structure, gate dielectric, mobile ionic charge, diffusion, thermal field treatment

For citation: Aleksandrov O. V., Morozov N. N. Influence of Traps on Mobile Charge Accumulation in MOS Structures in Thermal Field Treatments // LETI Transactions on Electrical Engineering & Computer Science. 2023. Vol. 16, no. 6. P. 20-28. doi: 10.32603/2071-8985-2023-16-6-20-28.

Conflict of interest. The authors declare no conflicts of interest.

Введение. Подвижные щелочные ионы служат причиной нестабильности параметров МОПструктур и МОП-транзисторов при термополевых обработках (ТПО) [1], [2], и наиболее распространенной загрязняющей примесью в SiO₂ явля-

ется натрий [1]-[5]. Накопление ионов Na⁺ вблизи межфазной границы (МФГ) Si-SiO₂ под действием приложенного к затвору смещения приводит к сдвигу порогового напряжения МОПтранзисторов [1], [2], [6]. Рядом авторов были проведены экспериментальные исследования параметров диффузии Na в МОП-структурах, специально легированных этой примесью [2]-[9].

зависимость Температурная подвижности ионов Na⁺ в SiO₂ описывается авторами [3]-[5], [8], [9] уравнением Аррениуса:

$$\mu = \mu_0 \exp\left(-\frac{E_a}{kT}\right),\tag{1}$$

где µ₀ – предэкспоненциальный множитель; *E*_a – энергия активации.

В [2]-[9] разделяют миграцию ионов натрия на два физически разных процесса: «быстрый» – с энергией активации 0.4...0.7 эВ, и «медленный» - с энергией активации 1...1.4 эВ. Процесс «быстрой» миграции объяснялся движением свободного натрия по междоузлиям и «каналам» в аморфном SiO₂ [5]. Полагалось, что в «медленном» процессе натрий пребывает в связанном состоянии (например, в группах -Si-O-Na) и его движение по толщине оксида происходит перескоком по ловушкам. Параметры миграции Na (коэффициент диффузии D, подвижность ионов µ и энергия активации E_a) из различных литературных источников [3], [4], [7]–[9] приведены в табл. 1. На рис. 1 построены графики зависимостей коэффициента диффузии Na от обратной температуры D(1/T) (данные [7] (*a*) и [7] (*b*)) соответствуют

[9]	0.63	46	_
[7] (<i>a</i>)	1	—	$2 \cdot 10^{-13}$
[7] (<i>b</i>)	1.4	—	$3 \cdot 10^{-15}$

Цель настоящей статьи заключается построение количественной модели процесса миграции подвижного заряда на примере ионов натрия в МОП-структурах при термополевых обработках с учетом захвата ионов на ловушках.

Уравнения модели. В аморфном диоксиде кремния SiO₂ имеются нарушения структуры, которые могут служить ловушками для ионов Na⁺. Полагаем, что ионы Na⁺ в процессе своего транспорта могут захватываться на такие нейтральные ловушки T⁰ в оксиде МОПструктуры с образованием положительно заряженных комплексов NT⁺:

$$Na^{+} + T^{0} \xrightarrow{k_{1}} NT^{+}, \qquad (2)$$

где k_1 и k_2 – константы скоростей прямой и об-

Puc. 1. Зависимости D(1/T) для примеси Na в диоксиде кремния построенные по литературным данным *Fig. 1.* Dependences D(1/T) for Na impurity ions in silicon dioxide plotted according to published data

пленкам оксида кремния, выращенным в сухом и влажном кислороде). Из рис. 1 виден большой разброс в экспериментальных данных.

Табл. 1. Параметры рассматриваемых источников, экспериментальные данные Tab. 1. Parameters of the considered sources, experimental data

Источник	<i>Е</i> _а , эВ	$\mu_0, c M^2 / (B \cdot c)$	<i>D</i> при <i>T</i> = 423 К, см ² /с
[3]	0.44	$3.5 \cdot 10^{-4}$	-
[4]	0.66	1.05	—
[8]	0.7	40	_

ратной реакций.

Система диффузионно-дрейфовых уравнений непрерывности и уравнения Пуассона, описывающая перенос подвижного заряда с учетом процессов захвата ионов на ловушки по реакции (2), принимает вид

$$\frac{\partial C_{\rm N}^{+}}{\partial t} = D \frac{\partial^2 C_{\rm N}^{+}}{\partial x^2} - \mu \frac{\partial}{\partial x} (C_{\rm N}^{+} E) - -k_1 C_{\rm N}^{+} C_{\rm T}^{0} + k_2 C_{\rm NT}^{+}; \qquad (3)$$

$$\frac{\partial C_{\rm NT}^+}{\partial t} = -\frac{\partial C_{\rm T}^0}{\partial t} = k_1 C_{\rm N}^+ C_{\rm T}^0 - k_2 C_{\rm NT}^+; \qquad (4)$$

$$\frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\epsilon\epsilon_0} = -\frac{q(C_N^+ + C_{NT}^+)}{\epsilon\epsilon_0},$$
 (5)

где x – координата (x = 0 на межфазной границе (МФГ) Si-SiO₂ и x = d на МФГ SiO₂-затвор, d - dтолщина оксида); t – продолжительность TПО; C_T⁰ – концентрация нейтральных ловушек Т⁰, C_{N}^+ и C_{NT}^+ – концентрации свободных ионов натрия Na⁺ и положительно заряженных комплексов NT+; V- распределение потенциала в диэлектрике; $E = -\frac{dV}{dx}$ – напряженность электрического поля; µ – подвижность ионов; $D = \mu \frac{kT}{a}$ (по соотношению Эйнштейна) – коэффициент диффузии ионов, $k = 8.617 \cdot 10^{-5}$ эВ/К – постоянная Больцмана, Т – абсолютная температура, $q = 1.6 \cdot 10^{-19}$ Кл – элементарный заряд; ε – отдиэлектрическая носительная проницаемость $(\varepsilon(SiO_2) = 3.9); \varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/M - электриче$ ская постоянная.

Начальным условием для решения системы уравнений (3)–(4) служит равномерное распределение свободных ионов натрия и нейтральных ловушек:

$$C_{\rm N}^+(x,0) = C_{\rm N0}^+;$$

 $C_{\rm T}^0(x,0) = C_{\rm T0}^0.$

Полагаем, что комплексы находятся в состоянии равновесия со свободными ионами натрия и нейтральными ловушками:

$$C_{\rm NT}^+(x,0) = k_{12} C_{\rm N0}^+ C_{\rm T0}^0, \tag{6}$$

где $k_{12} = k_1/k_2$ – константа равновесия реакции (1).

При диффузионном ограничении константа скорости прямой реакции (2) определяется коэффициентом диффузии подвижных ионов: $k_1 = 4\pi RD$, где $R \cong 1$ Å $(1 \cdot 10^{-10} \text{ м})$ – эффективный радиус сечения захвата иона натрия на ловушку T⁰. Обратная реакция происходит со скоростью, зависящей от энергии связи иона с ловушкой $E_{\rm b}$: $k_2 = v \exp\left(-\frac{E_{\rm b}}{kT}\right)$, где $v = 10^{12} {\rm c}^{-1}$ –

частота колебаний атомов.

Граничными условиями полагаются отражающие для ионов примеси границы диэлектрика:

$$j(0,t) = j(d,t) = 0,$$

где j – поток ионов примеси, $j(x,t) = -D \frac{\partial C_N^+}{\partial x} + \dots C_n^+ F$

 $+\mu C_{\mathrm{N}}^{+}E$.

На затвор подано постоянное положительное смещение $V(d, t) = V_G$.

На концентрации компонентов реакции (2) действуют условия сохранения интегральных концентраций ловушек и примеси:

$$\int_{0}^{d} \left[C_{\rm T}^{0}(x) + C_{\rm NT}^{+}(x) \right] dx = Q_{\rm T};$$
(7)

$$\int_{0}^{d} \left[C_{\rm N}^{+}(x) + C_{\rm NT}^{+}(x) \right] dx = Q_{\rm Na}, \qquad (8)$$

где $Q_{\rm T}$ – интегральная концентрация пустых и заполненных ловушек; $Q_{\rm Na}$ – интегральная концентрация ионов натрия в свободном и связанном состоянии.

Сложим уравнения (3) и (4) и, обозначив $C_{\Sigma} = C_{\rm N}^+ + C_{\rm NT}^+$, преобразуем к виду

$$\frac{\partial C_{\Sigma}}{\partial t} = D \frac{\partial}{\partial x} \left(\frac{1}{1 + \frac{\partial C_{\rm NT}^+}{\partial C_{\rm N}^+}} \frac{\partial C_{\Sigma}}{\partial x} \right) - \frac{1}{1 + \frac{\partial C_{\rm NT}^+}{\partial C_{\rm N}^+}} \left[E \frac{\partial C_{\Sigma}}{\partial x} + \frac{\partial E}{\partial x} C_{\Sigma} \left(\frac{\partial C_{\rm NT}^+}{\partial C_{\rm N}^+} \frac{C_{\rm N}^+}{C_{\rm NT}^+} \right) \right]. (9)$$

При условии равновесия (6)

$$\frac{C_{\rm NT}^{+}}{C_{\rm N}^{+}} = \frac{\partial C_{\rm NT}^{+}}{\partial C_{\rm N}^{+}} = k_{12}C_{\rm T}^{0}.$$
 (10)

Тогда в выражении (9) $\frac{\partial C_{\text{NT}}^+}{\partial C_{\text{N}}^+} \frac{C_{\text{N}}^+}{C_{\text{NT}}^+} = 1$, и оно

примет вид

$$\frac{\partial C_{\Sigma}}{\partial t} = \frac{\partial}{\partial x} \left(\frac{D}{1 + k_{12} C_{\Gamma}^0} \frac{\partial C_{\Sigma}}{\partial x} \right) - \frac{\mu}{1 + k_{12} C_{\Gamma}^0} \left(E \frac{\partial C_{\Sigma}}{\partial x} + \frac{\partial E}{\partial x} C_{\Sigma} \right).$$
(11)

Обозначим

$$D_{\rm ef} = \frac{D}{1 + k_{12} C_{\rm T}^0}; \tag{12}$$

$$\mu_{\rm ef} = \frac{\mu}{1 + k_{12} C_{\rm T}^0}.$$
 (13)

Тогда с подстановкой (12), (13) в соотношение (11) общая система уравнений (3)–(5) примет вид уравнения переноса для суммарной концентрации ионов C_{Σ} в электрическом поле:

$$\frac{\partial C_{\Sigma}}{\partial t} = \frac{\partial}{\partial x} \left(D_{\text{ef}} \frac{\partial C_{\Sigma}}{\partial x} \right) - \mu_{\text{ef}} \frac{\partial}{\partial x} (C_{\Sigma} E), \quad (14)$$

$$\frac{\partial^2 V}{\partial x^2} = -\frac{qC_{\Sigma}}{\varepsilon\varepsilon_0}.$$
 (15)

Отметим, что (14) справедливо только в состоянии равновесия при $t >> 1/k_2$ и при $t >> >> 1/(k_1 C_T^0)$. [3], в которой они определялись методом изотермического переходного ионного тока (ITIC).

На рис. 2 представлена рассчитанная по (14), (15) зависимость $C_{\Sigma}(x)$ по толщине оксидной пленки при термополевой обработке (T = 373 К (100 °C), $V_G = 1$ В, t = 60 с) для различных Q_T .

На рис. З показаны зависимости $D_{ef}(C_T^0)$ при различных E_b и T, построенные по (12). Полученные кривые имеют две области: область, в которой $D_{ef} = D$ при $C_T^0 < 1/k_{12}$, и область экспоненциального уменьшения D_{ef} при $C_T^0 > 1/k_{12}$. С ростом энергии связи натрия с ловушкой E_b область в которой $D_{ef} = D$ сокращается. С ростом температуры эффективный коэффициент диффузии D_{ef} увеличивается, а область экспоненциального падения D_{ef} начинается при бо́льших концентрациях ловушек.

Тангенс угла наклона на рис. 3 определяет эффективную энергию активации E_{aef} . Предположим, что для D_{ef} справедливо уравнение Аррениуса. Тогда

$$D_{\rm ef} = D_0 \exp\left(-\frac{E_{\rm aef}}{kT}\right),$$

Рис. 2. Зависимость $C_{\Sigma}(x)$ при $Q_{\rm T}$, см⁻²: I - 0, $2 - 10^{10}$, $3 - 10^{11}$, $4 - 10^{13}$, $5 - 10^{14}$, $6 - 10^{15}$ (d = 100 нм, $Q_{\rm Na} = 10^{11}$ см⁻², $E_{\rm b} = 1$ эВ, R = 1 Å, T = 373 K, $V_G = 1$ B, t = 60 с) Fig. 2. Dependence $C_{\Sigma}(x)$ at $Q_{\rm T}$, сm⁻²: I - 0, $2 - 10^{10}$, $3 - 10^{11}$, $4 - 10^{13}$, $5 - 10^{14}$, $6 - 10^{15}$ (d = 100 nm, $Q_{\rm Na} = 10^{11}$ сm⁻², $E_{\rm b} = 1$ eV, R = 1 Å, T = 373 K, $V_G = 1$ V, t = 60 s)

Результаты расчетов. В качестве исходных параметров для подвижности ионов Na в (1) выбраны $E_a = 0.44$ эВ и $\mu_0 = 3.5 \cdot 10^{-4}$ см²/В · с из

Используя (13), выведем соответствующую формулу для E_{aef} .

$$E_{\text{aef}} = -k \frac{\partial \ln\left(\frac{D_{\text{ef}}}{D_0}\right)}{\partial \frac{1}{T}}.$$
 (16)

где $D_0 = 3 \cdot 10^{-5}$ см²/с, $E_a = 0.47$ эВ – параметры диффузии по [3].

По формуле (16) были рассчитаны представленные на рис. 4 зависимости $E_{aef}(C_T^0)$ при различных Е_b и Т. При малых концентрациях ловушек $E_{aef} = E_a$, с ростом C_T^0 значение E_{aef} переходит в значение $E_{\mathbf{b}}$. С ростом $E_{\mathbf{b}}$ или с падением T

Рис. 4. Зависимости $E_{aef}(C_T^0)$ при $E_b = 1$ эВ: 1 - T = 573 К (300 °С); 2 - T = 373 К (100 °С); 3 - T = 293 К (20 °С); $4 - E_{\rm b} = 1.5$ 9B; T = 573 K (300 °C); $5 - E_{\rm b} = 0.75$ 9B, T = 573 K (300 °C) (R = 1 Å)

1017

 C_{T}^{0} , см $^{-3}$

1016

2

1019

 10^{20}

1018

1022

1021

Fig. 4. Dependences $E_{aef}(C_T^0)$ at $E_b = 1$ eV: I - T = 573 K (300 °C); 2 - T = 373 K (100 °C); 3 - T = 293 K (20 °C); $4 - E_{\rm b} = 1.5 \text{ eV}, T = 573 \text{ K} (300 \text{ °C}); 5 - E_{\rm b} = 0.75 \text{ eV}, T = 373 \text{ K} (300 \text{ °C}) (R = 1 \text{ Å})$

0.6

0.4

0.2

0 L 10¹²

1013

1014

1015

переход от E_a к E_b происходит при меньших концентрациях $C_{\rm T}^0$.

Значение концентрации свободных ловушек С_т⁰ зависит от интегральных концентраций ловушек $Q_{\rm T}$ и подвижных ионов $Q_{\rm Na}$. Подставляя (5), (7), (8) в (10) и решая вместе с (12) и (16), получаем зависимости $D_{ef}(Q_{Na})$ и $E_{aef}(Q_{Na})$ для различных $Q_{\rm T}$ и T, которые представлены на рис. 5 и 6. Можно видеть, что при $Q_{Na} > Q_T$ ловушки не оказывают влияния на D_{ef} и E_{aef} .

Обсуждение результатов. Из рис. 2 можно видеть, что с увеличением Q_T накопление Na вблизи МФГ Si-SiO₂ замедляется. Уменьшение поверхностной концентрации натрия вблизи МФГ становится заметным при $Q_{\rm T} > 10^{13} {\rm ~cm}^{-2}$ (рис. 2, кривая 5). С ростом $Q_{\rm T}$ зависимость $C_{\Sigma}(x)$ стремится к начальному равномерному распреде-

Рис. 5. Зависимости $D_{ef}(Q_{Na})$ при $Q_T = 10^{12}$ см⁻²: I - T = 573 К (300 °С), 2 - T = 423 К (150 °С), 3 - T = 293 К (20 °С), при $Q_{\rm T} = 10^{14}$ см⁻²: 4 - T = 573 K (300 °C), 5 - T = 423 K (150 °C), 6 - T = 293 (20 °C) ($E_{\rm b} = 1$ эВ, R = 1 Å, d = 100 нм) *Fig. 5.* Dependences $D_{\rm ef}(Q_{\rm Na})$ at $Q_{\rm T} = 10^{12}$ cm⁻²: 1 - T = 573 K (300 °C), 2 - T = 423 K (150 °C), 3 - T = 293 K (20 °C), at $Q_{\rm T} = 10^{14} \,{\rm cm}^{-2}$: 4 – T = 573 K (300 °C), 5 – T = 423 K (150 °C), 6 – T = 293 K (20 °C) ($E_{\rm b} = 1 \,{\rm eV}$, R = 1 Å, d = 100 nm)

Рис. 6. Зависимости $E_{aef}(Q_{Na})$ при $Q_T = 10^{12}$ см⁻²: I - T = 573 К (300 °C), 2 - T = 423 К (150 °C), 3 - T = 293 К (20 °C); при $Q_{\rm T} = 10^{14}$ см⁻²: 4 - T = 573 K (300 °C), 5 - T = 423 K (150 °C), 6 - T = 293 K (20 °C) ($E_{\rm b} = 1$ эВ, R = 1 Å, d = 100 нм)Fig. 6. Dependences $E_{aef}(Q_{Na})$ at $Q_{T} = 10^{12}$ cm⁻²: l - T = 573 K (300.°C), 2 - T = 423 K (150.°C), 3 - T = 293 K (20.°C); $Q_{\rm T} = 10^{14} \,{\rm cm}^{-2}$: $4 - T = 573 \,{\rm K}$ (300 °C), $5 - T = 423 \,{\rm K}$ (150 °C), $6 - T = 293 \,{\rm K}$ (20 °C) ($E_{\rm b} = 1 \,{\rm eV}$, $R = 1 \,{\rm \AA}$, $d = 100 \,{\rm nm}$)

лению примеси (рис. 2, кривая 6).

По рис. З видно, что при определенном значении концентрации не занятых натрием ловушек $C_{\rm T}^0$ коэффициент диффузии плавно переходит на область экспоненциального снижения с ростом $C_{\rm T}^0$. Область перехода можно видеть на рис. 4 как область с концентрациями $C_{\rm T}^0$, при которых $E_{\rm aef}$ начинает расти от значения $E_{\rm a}$ до значения $E_{\rm b}$. Повышение температуры T (равно как и снижение $E_{\rm b}$) увеличивает необходимую для перехода $E_{\rm a} \rightarrow E_{\rm b}$ концентрацию свободных ловушек $C_{\rm T}^0$.

Как видно из рис. 5, 6, зависимость коэффициента диффузии от температуры непосредственно связана с параметрами Q_T , Q_{Na} и E_b . По рис. 5, 6 можно сделать вывод, что зависимости D_{ef} и E_{aef} от температуры T имеют две области: одна описывает поведение при «быстром» процессе миграции, соответствуя экспериментальным данным [3], другая же область соответствует «медленному» процессу, связанному с актами захвата подвижных ионов ловушками.

С помощью предлагаемой модели и данных [3] рассчитаны параметры $E_{\rm b}$ и $C_{\rm T}^0$ для коэффициентов диффузии D и энергий активации $E_{\rm a}$ из [7] и представлены в табл. 2 и на рис. 7. Однако

фузии). В связи с этим проведен расчет также по данным [9], имеющим наибольший предэкспоненциальный множитель (табл. 1). Результаты моделирования представлены в табл. 2 и построены на рис. 7 (сплошные линии) вместе с экспериментальными данными (пунктирные линии).

Табл. 2	2. Параме	тры ловушек,	результаты	моделирования
	Tab. 2.	Trap parameter	rs, simulatior	1 results

По данным [3] и [9]					
Источник	<i>Е</i> _b , эВ	C_{T}^{0} , см $^{-3}$			
[7] (<i>a</i>)	1	$5 \cdot 10^{19}$			
[7] (<i>b</i>)	1.4	$5.05 \cdot 10^{16}$			
По данным [9]					
[8]	0.75	$1.2\cdot 10^{18}$			
[4]	0.69	$9 \cdot 10^{19}$			

С помощью данных [9] можно описать бо́льшее количество литературных данных в рамках описанной модели, чем с помощью данных [3]. Среди возможных причин отклонения данных [3] от [9] можно отметить следующие:

1. Меньшая энергия активации в [3] ($E_a = 0.44$ эВ), чем в [9] ($E_a = 0.63$ эВ), может быть объяснена бо́льшей интегральной концентрации примесных ионов [10].

2. В [3] для введения Na использовалась ионная имплантация, создающая множественные радиационные дефекты – ловушки захвата ионов, – тогда как в [9] использовалось поверхностное за-

Рис. 7. Зависимости $D_{ef}(1/T)$, где пунктирные линии – эксперимент, сплошные – расчет по модели *Fig.* 7. Dependences $D_{ef}(1/T)$, where the dotted lines are the experiment, the solid lines are the calculation by the model данные [4], [8], [9] ($E_a = 0.63...0.7$ эВ) невозможно описать данными [3] (так как нельзя замедляющими ловушками увеличить коэффициент диф-

3. В [3] и [9] использовались разные методы определения параметров переноса ионов Na. В [9] использовался косвенный метод измерения дифференцированием сдвига напряжения плоских зон ΔV_{FB} по времени, тогда как в методе ITIC в [3] рассматривались зависимости термостимулированного переходного ионного тока от времени при определенных температурах при краткосрочных воздействиях электрического поля.

Выводы и заключение. Разработана количественная модель перераспределения подвижного заряда в МОП-структурах при ТПО, учитывающая наличие ловушек для свободных ионов примеси. Показано, что захват примеси на ловушки приводит к замедлению накопления подвижного заряда (рис. 2), уменьшению эффективного коэффициента диффузии (рис. 3) и увеличению эффективной энергии активации (рис. 4). Рост концентрации подвижного заряда приводит к увеличению эффективного коэффициента диффузии и снижению энергии активации (рис. 5 и 6). Показано, что в рамках модели большой разброс литературных данных по величинам D и E_a для примеси Na (рис. 1) может быть объяснен захватом свободных ионов Na⁺ на ловушки (рис. 7), концентрация которых зависит от технологии получения SiO₂.

Список литературы

1. Ion Transport phenomena in insulating films / E. H. Snow, A. S. Grove, B. E. Deal, C. T. Sah // J. of Appl. Physics. 1965. Vol. 36, no. 5. P. 1664–1673. doi: 10.1063/1.1703105.

2. Verwey J. F., Amerasekera E. A., Bisschop J. The physics of SiO_2 layers // Reports on Progress in Physics. 1990. Vol. 53, no. 10. P. 1297–1331. doi: 10.1088/0034-4885/53/10/002.

3. Greeuw G., Verwey J. F. The mobility of Na⁺, Li⁺, and K⁺ ions in thermally grown SiO₂ films // J. of Appl. Physics, 1984. Vol. 56, no. 8. P. 2218–2224. doi: 10.1063/1.334.56.

4. Stagg J. P. Drift mobilities of Na⁺ and K⁺ ions in SiO₂ films // Appl. Physics Lett., 1977. Vol. 31, no. 8. 532–533. doi: 10.1063/1.89766.

5. Hofstein S. R. Proton and sodium transport in SiO_2 films // IEEE Transactions on Electron Devices. 1967. Vol. 14, no. 11. P. 749–759. doi: 10.1109/T-ED.1967.16102.

6. Kriegler R. J. and Devenyi T. F. Temperature-bias aging of (HCI) MOS structures // 11th Reliability Physics Symp. Las Vegas, NV, USA, 1973. P. 153–158. doi: 10.1109/IRPS.1973.362587.

7. Ordered structure and ion migration in silicon dioxide films / T. Sugano, K. Hoh, K. Kudo, N. Hishimuna // Japanese J. of Appl. Physics. 1968. Vol. 7, no. 7. P. 715– 730. doi: 10.1143/JJAP.7.715.

8. Hofstein S. R. Proton and sodium transport in SiO_2 films // IEEE Transactions on Electron Devices. 1967. Vol. 14, no. 11. P. 749–759. doi: 10.1109/T-ED.1967.16102.

9. Kriegler R. J., Devenyi T. F. Direct measurement of Na+ ion mobility in SiO₂ films // Thin Solid Films. 1976. Vol. 36, no. 2. P. 435–439. doi: 10.1016/0040-6090 (76)90057-2.

10. Kuhn M., Silversmith D. J. Ionic contamination and transport of mobile ions in MOS structures // J. of The Electrochemical Society. 1971. Vol. 118, no. 6. P. 966–970. doi: 10.1149/1.2408233.

Информация об авторах

Александров Олег Викторович – д-р физ.-мат. наук, профессор кафедры ЭП СПбГЭТУ «ЛЭТИ». E-mail: Aleksand_ov@mail.ru

Морозов Никита Николаевич – аспирант, ассистент и учебный мастер кафедры ЭП СПбГЭТУ «ЛЭТИ».

E-mail: laughter-maiden@mail.ru

References

1. Ion Transport phenomena in insulating films / E. H. Snow, A. S. Grove, B. E. Deal, C. T. Sah // J. of Appl. Physics. 1965. Vol. 36, no. 5. P. 1664–1673. doi: 10.1063/1.1703105.

2. Verwey J. F., Amerasekera E. A., Bisschop J. The physics of SiO_2 layers // Reports on Progress in Physics. 1990. Vol. 53, no. 10. P. 1297–1331. doi: 10.1088/0034-4885/53/10/002.

3. Greeuw G., Verwey J. F. The mobility of Na⁺, Li⁺, and K⁺ ions in thermally grown SiO₂ films // J. of Appl. Physics, 1984. Vol. 56, no. 8. P. 2218–2224. doi: 10.1063/1.334.56.

4. Stagg J. P. Drift mobilities of Na⁺ and K⁺ ions in SiO₂ films // Appl. Physics Lett., 1977. Vol. 31, no. 8. 532–533. doi: 10.1063/1.89766.

5. Hofstein S. R. Proton and sodium transport in SiO_2 films // IEEE Transactions on Electron Devices. 1967. Vol. 14, no. 11. P. 749–759. doi: 10.1109/T-ED.1967.16102.

6. Kriegler R. J. and Devenyi T. F. Temperature-bias aging of (HCl) MOS structures // 11th Reliability Physics Symp. Las Vegas, NV, USA, 1973. P. 153–158. doi: 10.1109/IRPS.1973.362587.

7. Ordered structure and ion migration in silicon dioxide films / T. Sugano, K. Hoh, K. Kudo, N. Hishimuna //

.....

Japanese J. of Appl. Physics. 1968. Vol. 7, no. 7. P. 715–730. doi: 10.1143/JJAP.7.715.

8. Hofstein S. R. Proton and sodium transport in SiO_2 films // IEEE Transactions on Electron Devices. 1967. Vol. 14, no. 11. P. 749–759. doi: 10.1109/T-ED.1967.16102.

9. Kriegler R. J., Devenyi T. F. Direct measurement of Na+ ion mobility in SiO₂ films // Thin Solid Films. 1976. Vol. 36, no. 2. P. 435–439. doi: 10.1016/0040-6090(76)90057-2.

10. Kuhn M., Silversmith D. J. Ionic contamination and transport of mobile ions in MOS structures // J. of The Electrochemical Society. 1971. Vol. 118, no. 6. P. 966–970. doi: 10.1149/1.2408233.

Information about the authors

Oleg V. Aleksandrov – Dr Sci. (Phys.-Math.), Professor of the Department of Electrical Engineering of Saint Petersburg Electrotechnical University.

E-mail: Aleksand_ov@mail.ru

Nikita N. Morozov – post-graduate student, assistant and educational master of the Department of Electrical Engineering of Saint Petersburg Electrotechnical University. E-mail: laughter-maiden@mail.ru

Статья поступила в редакцию 18.04.2023; принята к публикации после рецензирования 04.05.2023; опубликована онлайн 23.06.2023.

Submitted 18.04.2023; accepted 04.05.2023; published online 23.06.2023.

.....