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Аннотация. Рассматриваются актуальные вопросы обеспечения надежности и безопасности магистраль-
ных газотранспортных систем. Проанализированы типовые неисправности ключевого оборудования: цен-
тробежных нагнетателей, запорной и регулирующей арматуры, систем электропривода и трубопроводов. 
Особое внимание уделено современным методам и алгоритмам технической диагностики, включая ана-
лиз рабочих параметров и интеллектуальные системы мониторинга. Показано, что комплексное приме-
нение этих методов в рамках предиктивной (прогнозной) модели технического обслуживания позволяет 
существенно снизить эксплуатационные риски и предотвратить аварийные ситуации. 
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Введение. Магистральные газопроводы пред-
ставляют собой критически важный элемент топ-
ливно-энергетического комплекса. Их беспере-
бойная и безопасная эксплуатация напрямую вли-

яет на энергетическую безопасность государства. 
Основное технологическое оборудование га-
зотранспортных систем (ГПА, узлы подключения, 
линейная арматура) работает в условиях экстре-
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мальных механических, термических и химиче-
ских нагрузок, что обусловливает возникновение 
разнообразных дефектов и неисправностей [1]. 

Своевременное выявление таких неисправно-
стей – основная задача технической диагностики. 
Переход от планово-предупредительного обслу-
живания к обслуживанию по фактическому со-
стоянию (предиктивная модель) требует разработки 
и внедрения эффективных методов и алгоритмов 
диагностики. Целью данной статьи служит систе-
матизация типовых неисправностей газотранспорт-
ного оборудования и анализ современных методов 
их обнаружения и идентификации. 

1. Типовые неисправности оборудования 
для транспортировки газа. 

1.1. Газоперекачивающие агрегаты (ГПА). На-
иболее сложным и ответственным элементом яв-
ляются ГПА, основу которых составляют центро-
бежные нагнетатели и приводные газовые турби-
ны или электродвигатели. Типичные неисправно-
сти ГПА: 

• Дисбаланс ротора: одна из самых распро-
страненных неисправностей, возникающая из-за 
неравномерного износа, загрязнения проточной 
части или деформации. 

• Несовпадение осей (расцентровка) соедини-
тельных муфт между двигателем и нагнетателем. 

• Износ и разрушение подшипников (качения 
и скольжения). 

• Механический контакт ротора и статора (за-
тирание). 

• Аэродинамическая неустойчивость: помпаж, 
возникающий при нарушении режима «расход–
напор», чрезвычайно опасен и может привести к 
разрушению агрегата. 

• Трещины и усталостные разрушения лопа-
ток рабочего колеса. 

1.2. Запорная и регулирующая арматура. 
Типичные неисправности: 

• Негерметичность уплотнительных элемен-
тов: износ сальниковых уплотнений, манжет, 
уплотнительных поверхностей («седло–затвор»). 

• Неполное открытие/закрытие задвижек и 
кранов, вызванное износом шпинделя, деформа-
цией или попаданием инородных тел. 

• Отказы систем управления (электропривод, 
пневмопривод) – износ редукторов, поломка зубча-
тых передач, неисправности датчиков положения, 
падение коэффициентов усиления двигателей. 

1.3. Линейная часть магистрального газо-
провода. Типичные неисправности: 

• Потеря металла вследствие внешней и внут-
ренней коррозии. 

• Механические повреждения (вмятины, ца-
рапины). 

• Дефекты сварных швов. 
• Разрушение изоляционного покрытия. 
2. Методы и алгоритмы диагностики неис-

правностей. Современная диагностика базируется 
на комплексе методов, позволяющих оценить со-
стояние оборудования без его разборки. В статье 
предлагаются следующие методы и алгоритмы диа-
гностики неисправностей.  

2.1. Интеллектуальные системы диагности-
ки и прогнозирования служат базовой платформой 
для решения задач диагностики. Современный 
тренд – интеграция всех методов в единую систему 
мониторинга с применением алгоритмов машинно-
го обучения и искусственного интеллекта [2]. 

Алгоритм работы интеллектуальной системы: 
1. Сбор данных: объединение данных от вибро-

датчиков, термокамер, датчиков давления, УЗ-де-
текторов в единый центр обработки данных (ЦОД). 

2. Обучение модели: на основе исторических 
данных строится «цифровой двойник» оборудова-
ния [3], [4] – модель его нормального поведения. 

3. Выявление аномалий: в реальном времени 
текущие данные сравниваются с моделью. Алго-
ритмы автоматически обнаруживают отклонения. 

4. Диагностика и прогноз: на основе выяв-
ленных аномалий и базы знаний система класси-
фицирует тип неисправности и прогнозирует 
остаточный ресурс оборудования (RUL – Remai-
ning Useful Life). 

Современные интеллектуальные системы – это 
не просто набор датчиков, а сложные киберфизи-
ческие комплексы, объединяющие физическое 
оборудование с его цифровой моделью и анали-
тическими алгоритмами. 

Архитектура интеллектуальной системы: 
1. Слой данных (Data Layer): 
Источники: вибродатчики, датчики темпера-

туры, давления, расхода, токовые клещи, ультра-
звуковые детекторы, тепловизоры. 

Платформа: промышленный IoT-шлюз, осу-
ществляющий сбор, первичную фильтрацию и пе-
редачу данных в облако или корпоративный ЦОД. 

2. Слой анализа и моделирования (Analytics & 
Modeling Layer): 

Цифровой двойник (Digital Twin): динамиче-
ская виртуальная копия физического актива 
(например, ГПА), которая обновляется в реаль-
ном времени. Моделирует отклик оборудования 
на изменения нагрузок и условий. 
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Машинное обучение (ML) и искусственный 
интеллект (AI): 

• Модели обнаружения аномалий (Unsupervi-
sed Learning): здесь предлагается метод на основе 
одноклассового классификатора. Идея диагно-
стики: измерения проверяемого, тестового объек-
та на основе средних значений и ковариаций век-
тора параметров сравнивают с номинальной ста-
тистикой здорового объекта, чтобы проверить, 
правдоподобно ли, что тестовый объект исправен. 
Ожидается, что неисправный объект будет обна-
ружен как аномалия применительно к функциям 
обнаружения, т. е. обнаружение неисправности 
будем рассматривать как поиск аномалий. 

• Модели классификации неисправностей (Su-
pervised Learning): на основе размеченных исто-
рических данных (например, «вибрация при дис-
балансе», «вибрация при дефекте подшипника») 
алгоритмы обучаются точно идентифицировать 
тип дефекта по совокупности признаков. Здесь 
предлагаются следующие методы диагностики: 

– DTW-классификация. Идея DTW-алгоритма – 
нахождение соответствия между двумя временны-
ми последовательностями за счет трансформации 
временной шкалы одной последовательности от-
носительно другой с целью совместить их по 
форме кривых. При классификации неисправно-
стей сравниваются эталонные временные ряды S 
при наличии и отсутствии неисправностей с те-
стовыми временными рядами U с целью опреде-
ления наименьшего DTW-расстояния от эталона, 
что и определяет неисправность; 

– мультиклассовый классификатор. Идея мето-
да – анализ сигналов рассогласования на структур-
ной модели. Признаки, которые нужно извлечь из 
сигналов рассогласования, априори неизвестны. 
Поэтому используется набор статистических при-
знаков и из них выбирают сработавшие; 

– банк диагностических моделей. Метод диа-
гностики на основе банка диагностических моде-
лей предполагает построение классификатора в 
виде банка моделей системы без неисправностей 
и со всеми неисправностями. Идея метода – об-
наружение неисправности по близкому к нулю 
сигналу рассогласования между выходом систе-
мы и выходами моделей из банка. 

Модели прогнозирования остаточного ресурса 
RUL. Здесь предлагается ряд методов оценки RUL: 

– оценка остаточного срока полезного исполь-
зования RUL на основе сходства. Метод сводит 
измерения датчиков в один индикатор работоспо-
собности, с помощью которого модель обучается 

на основе сходства между индикатором работо-
способности и его оценкой; 

– мониторинг состояния и прогнозирование с 
использованием вибрационных сигналов. Для 
мониторинга состояния создается сигнал тревоги, 
который срабатывает, если признак во временной 
области (среднеквадратичный корень, пиковое 
значение, эксцесс сигнала и т. д.) или в частотной 
области (пиковая частота, средняя частота и т. д.) 
превышает заданное пороговое значение; 

– прогнозирование с помощью линейной ре-
грессии, контролируемого алгоритма машинного 
обучения. Линейная модель имеет вид: yi = wTxi +  
+ β, где yi – количество циклов для ячейки изме-
рения i; xi – p-мерный вектор признаков для ячей-
ки i; w – p-мерный вектор коэффициентов модели; 
β – скалярный отсекаемый элемент. Линейная 
модель регуляризована с использованием эла-
стичной сети для решения проблемы высокой 
корреляции между признаками; 

– прогнозирование с использованием катего-
риальных данных для обучения модели бинарно-
го дерева решений. Категориальные данные – это 
данные, которые имеют значения в конечном 
наборе дискретных категорий (код производите-
ля, местоположение машины и уровень опыта 
операторов и т. п.). Можно использовать эти пе-
ременные в качестве предикторов вместе с дру-
гими измеренными данными датчиков. Здесь ис-
пользуются категориальные переменные для обу-
чения модели бинарного дерева решений, которая 
классифицирует, сломаны ли машины; 

– оценка RUL с использованием сверточной 
нейронной сети. Здесь данные используют в 
формате последовательности, где первое измере-
ние представляет собой количество выбранных 
признаков, а второе измерение представляет со-
бой длину временной последовательности. Свер-
точные слои со слоем пакетной нормализации 
объединяют, далее следует слой активации, а за-
тем слои складываются вместе для извлечения 
признаков и получения значения RUL на выходе; 

– метод глубокого обучения для оценки RUL. 
Данные, представляющие полный жизненный цикл 
исследуемого объекта, используются для обучения 
архитектуры на основе двумерной сверточной 
нейронной сети, и эта обученная сеть используется 
для оценки оставшегося срока службы. 

Углубленный алгоритм работы системы: 
1. Предаварийное оповещение (Early War-

ning): система на основе моделей аномалий обна-
руживает малозаметное изменение в паттерне, 



Информатика, вычислительная техника и управление 
Informatics, Computer Technologies and Control 

74 

которое еще не превышает аварийных порогов, но 
является признаком начальной стадии деграда-
ции. Формируется предупреждение для службы 
диагностики. 

2. Верификация и диагностика (Verification & 
Diagnostics): при получении предупреждения си-
стема автоматически активирует углубленную 
диагностику: запрашивает данные с сопряженных 
датчиков, проводит частотный анализ, сравнивает 
полученные данные с архивными. Классифика-
ционная ML-модель обрабатывает этот комплекс 
данных и выдает вероятностный диагноз, напри-
мер: «Дефект объекта, вероятность 92 %». 

3. Прогнозирование и планирование (Prog-
nostics & Planning): на основе установленного 
диагноза активируется модель прогнозирования 
RUL. Система рассчитывает, например, что при 
текущей динамике критический уровень будет 
достигнут через ~45 суток. Эта информация ав-
томатически передается в систему управления 
техническим обслуживанием (CMMS), которая 
планирует ремонт на ближайшем плановом оста-
нове, например через 30 дней, минимизируя про-
стой и исключая аварию. 

4. Самообучение системы (Continuous Lear-
ning): после выполнения ремонта и ввода агрегата 
в работу система получает обратную связь (де-
фект был подтвержден). Эти данные добавляются 
в тренировочный набор, что повышает точность 
моделей на будущее. 

Интеллектуальные системы диагностики и 
прогнозирования могут строиться как мультиа-
гентные отказоустойчивые системы управления. 
Она состоит из двух агентов – диагностирующего 
и корректирующего. Корректирующий агент, по-
лучив информацию о неисправности от диагно-
стирующего агента, компенсирует неисправность. 

2.2. Анализ рабочих параметров (Perfor-
mance Monitoring). Метод основан на анализе 
технологических параметров: давление на вхо-
де/выходе, температура, расход газа, мощность, 
скорость вращения. 

• Диагностируемые неисправности: загрязне-
ние проточной части ГПА, помпаж, неисправно-
сти системы охлаждения. 

• Алгоритм диагностики: 
1. Непрерывный мониторинг параметров в 

режиме реального времени. 
2. Сравнение фактических характеристик 

(например, степень сжатия от расхода) с паспорт-
ной (эталонной) характеристикой ГПА. Здесь ча-

сто используются методы диагностики на основе 
пороговой логики и анализа экстремумов сигнала. 
В этих методах эксперт анализирует графики из-
менения сигналов и пытается сформулировать 
правила для мгновенных и экстремальных значе-
ний сигнала, идентифицирующие все неисправ-
ности и их отсутствие. 

3. Сдвиг характеристики свидетельствует об 
изменении состояния агрегата (например, сниже-
ние КПД из-за загрязнения). 

Анализ рабочих параметров трансформиро-
вался от простого контроля технологических пре-
делов к сложному процессу оценки интегральных 
характеристик оборудования – этот метод осно-
ван на первом законе термодинамики и позволяет 
оценить эффективность и состояние оборудова-
ния в режиме, близком к реальному времени. 

2.2.1. Ключевые диагностические параметры 
и их производные: 

• Для ГПА (газоперекачивающий агрегат): 
– степень сжатия ε = P_выхода/P_входа. Па-

дение степени сжатия при неизменной мощности 
и расходе – прямой признак износа проточной 
части или загрязнения межлопаточных каналов; 

– политропический напор (H pol): расчетная 
величина, определяющая эффективность сжатия 
газа. Снижение политропического напора указы-
вает на ухудшение аэродинамических качеств 
нагнетателя; 

– КПД η = (адиабатическая работа)/(факти-
чески затраченная работа) – интегральный показа-
тель здоровья агрегата. Тренд на снижение КПД – 
ключевой индикатор деградации; 

– расход газа Q: анализ зависимости «напор–
расход». Смещение рабочей точки и всей харак-
теристической кривой влево (в сторону меньшей 
производительности) свидетельствует о загрязне-
нии или эрозии колеса нагнетателя. 

• Для теплообменного оборудования (масло- и 
газоохладители) – коэффициент теплопередачи K: 
Q = K · F × ΔT, где Q – тепловой поток; F – 
площадь поверхности; ΔT – логарифмическая 
разность температур. Падение коэффициента K 
свидетельствует о загрязнении труб с внутрен-
ней или внешней стороны, об образовании от-
ложений. 

2.2.2. Алгоритм диагностики на основе ана-
лиза рабочих параметров: 

1. Сбор и предобработка данных: сбор данных с 
датчиков давления, температуры, расхода и скоро-
сти вращения. Фильтрация от шумов, усреднение 
для устранения случайных колебаний. 
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2. Расчет термодинамических показателей: в 
реальном времени вычисляются производные 
показатели: КПД, политропический напор, сте-
пень сжатия. 

3. Сравнение с эталонной моделью («цифро-
вым двойником»): рассчитанные показатели 
сравниваются с эталонными значениями, полу-
ченными при испытаниях агрегата в идеальном 
состоянии, с поправкой на текущие условия (дав-
ление, температура, состав газа). 

Здесь часто используется анализ сигналов 
рассогласования выходных параметров системы с 
эталонными. Например, метод диагностики на 
основе нечеткой эталонной модели, который 
предполагает построение нечеткой модели систе-
мы в режиме без неисправностей. Идея метода – 
обработка сигнала рассогласования между выхо-
дом эталонной модели и реальным сигналом не-
четкой системой. Близок к этому методу метод 
диагностики на основе нейросетевой эталонной 
модели, только здесь неисправности обнаружи-
ваются по результатам анализа комбинаций ми-
нимумов и максимумов сигнала рассогласования 
в соответствии с базой правил для экстремальных 
значений сигналов. 

Еще один метод диагностики аналогичного 
типа – FDE-FIE-SVM-метод. Это комбинация 
двух методов FDE-FIE и метода машинного обу-
чения SVM. FDE обнаруживает неисправности, 
FIE локализует, SVM – метод опорных векторов 
машинного обучения. 

Известен также метод соотношения паритета. 
Метод соотношения паритета основан на описании 
модели в пространстве состояний. На этой основе 
строится набор кодирования, представляющий со-
бой матрицу, где каждая строка – рассогласование, 
столбец – неисправность. Единицы в матрице пока-
зывают влияние отказа в столбце на рассогласова-
ние в строке. По набору кодирования осуществля-
ется обнаружение и локализация неисправностей. 

4. Выявление девиаций (отклонений): фикси-
руется не просто выход за порог, а анализ тренда. 
Например, плавное снижение КПД на 0.5 % в ме-
сяц – это диагностический признак. 

5. Классификация неисправности: 
• Сценарий А: Падение КПД и напора при 

неизменном расходе → загрязнение проточной 
части. 

• Сценарий Б: Падение расхода и рост темпе-
ратуры на выходе при неизменной мощности → 
возможное загрязнение межтрубного простран-
ства охладителя. 

• Сценарий В: Резкие колебания давления и 
расхода, выход на левую границу характеристи-
ческой кривой → угроза помпажа. 

Данный метод не всегда позволяет точно ло-
кализовать дефект (например, отличить загрязне-
ние от эрозии), но исключительно эффективен 
для оценки общего «здоровья» агрегата и плани-
рования ремонтов. 

2.3. Анализ неисправностей, которые про-
являются не изолированно, а через сложные, 
разветвленные и зашумленные причинно-след-
ственные связи в системе. 

Типичные неисправности: 
• Неисправности, связанные с целостностью и 

гидравликой трубопровода: 
– утечки газа (различной интенсивности и ло-

кализации); 
– закупорки (гидратные пробки, скопления 

жидкости, частичное перекрытие задвижки); 
– снижение пропускной способности (зарас-

тание парафинами, шламами). 
• Неисправности основного оборудования 

компрессорных станций (КС): 
– отказ или снижение КПД газоперекачиваю-

щего агрегата; 
– неисправности системы охлаждения газа; 
– некорректная работа системы автоматиче-

ского регулирования (САР). 
• Неисправности запорной и регулирующей 

арматуры: 
– самопроизвольное частичное закры-

тие/открытие задвижки; 
– негерметичность затвора задвижки (неплот-

ное закрытие). 
• Комплексные и каскадные (вторичные) не-

исправности: 
– каскадные отказы; 
– неисправности систем измерения (датчиков). 
Здесь предлагается использовать метод диагно-

стики на основе нечетких графов. В рамках модели 
состояние газотранспортной системы представляет-
ся топологической моделью в виде нечеткого графа, 
где вершины соответствуют оборудованию, а дуги – 
функциональным связям с весами, отражающими 
степень влияния. Разработан алгоритм локации не-
исправного элемента на основе анализа нечетких 
путей и центральности вершин. 

Также может использоваться метод прогно-
зирования возникновения неисправности на осно-
ве нечеткой когнитивной карты. Причем здесь 
диагностическая модель в форме нечеткого ори-
ентированного графа рассматривается как нечет-
кая когнитивная карта. 
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Теория нечетких графов [5] предоставляет 
мощный аппарат для моделирования систем с 
нечетко определенными отношениями между 
компонентами, что идеально соответствует при-
роде ГТС, где влияние одного элемента на другой 
не всегда детерминированное и может быть оце-
нено экспертно. 

Основные преимущества предложенного под-
хода: 

1. Учет неопределенности: модель эффектив-
но работает с зашумленными и неточными дан-
ными. 

2. Интеграция экспертных знаний: позволяет 
формализовать опыт эксплуатационного персона-
ла через веса дуг графа. 

3. Наглядность: графовая модель предостав-
ляет интуитивно понятное представление о 
структуре и связях в системе. 

4. Повышение точности: алгоритм анализиру-
ет не просто факт аномалии, а структуру ее рас-
пространения, что снижает вероятность ложной 
диагностики. 

Резюме: какие неисправности метод выявляет 
НАИЛУЧШИМ образом? 

Метод на основе нечетких графов, наиболее 
мощный для диагностики: 

1. Распространенных неисправностей с неоче-
видной локализацией: утечки, закупорки, где симп-
томы проявляются в нескольких точках системы. 

2. Сложных причинно-следственных цепочек: 
каскадные отказы, когда несколько событий про-
исходят почти одновременно. 

3. Неисправностей в условиях неполноты и 
зашумленности данных: когда часть датчиков не-
исправна или их показания недостоверны, модель 
использует логику связей для интерполяции не-
достающей информации. 

4. «Скрытых» деградационных процессов: 
постепенное снижение эффективности оборудо-
вания, которое система может выявить за счет 
анализа долгосрочных трендов в показателях 
аномальности вершин. 

Таким образом, метод не просто констатирует 
факт отклонения параметра, а интеллектуально 
анализирует структуру системы, чтобы найти 
первопричину наблюдаемой аномалии, что слу-
жит его ключевым преимуществом перед тради-
ционными пороговыми сигнализациями. 

2.4. Анализ каскадного распространения ло-
кальных неисправностей в системах маги-
стрального транспорта газа. Современные си-
стемы магистрального транспорта газа представ-

ляют собой сложные технологические комплексы 
с высокой степенью взаимосвязанности оборудо-
вания. Особенность таких систем состоит в воз-
можности каскадного развития аварийных ситуа-
ций, когда локальная неисправность одного эле-
мента распространяется по технологическим ка-
налам и может привести к полномасштабному 
системному отказу [6]. 

Основные технологические каналы: 
– гидравлические связи (распространение из-

менений давления); 
– тепловые связи (распространение темпера-

турных возмущений); 
– функциональные связи (логические зависи-

мости оборудования); 
– управляющие связи (влияние через систему 

управления). 
Задача состоит в предотвращении передачи с 

выхода технической системы в последующие 
блоки технологического процесса неправильной 
информации, которая может привести к серьез-
ным неисправностям, вплоть до возникновения 
аварийной ситуации. Для этого предлагается ис-
пользовать метод интеллектуального резервиро-
вания каналов передачи информации.  В случае, 
когда обнаружена неисправность в одной из ча-
стей системы, в методе происходит замена сигна-
лов модели на сигналы эталонных моделей с 
нейронных сетей с правильными сигналами. 

2.5. Отказы системы управления процессом 
транспортировки газа. Диагностика отказов в 
такой критически важной системе, как система 
управления процессом транспортировки газа, 
является комплексной задачей и включает в себя 
несколько уровней методов: 

1. Статистические и аналитические мето-
ды (Model-Based). Основаны на сравнении ре-
ального поведения системы с ее математической 
моделью. 

• Метод анализа остатков (Residual Analysis). 
Суть: создается математическая модель си-

стемы (например, с помощью уравнений баланса 
массы, импульса и энергии). Модель предсказы-
вает значения технологических параметров (дав-
ление, расход, температура). Разница между 
предсказанным значением и реальным измерени-
ем с датчика называется остатком. 

Диагностика: в исправной системе остатки 
близки к нулю (в пределах шумов). Если возника-
ет отказ, остатки выходят за допустимые преде-
лы. Анализируя вектор остатков, можно локали-
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зовать неисправный элемент (датчик, исполни-
тельный механизм). 

• Параметрическая идентификация. 
Суть: постоянно или периодически оценива-

ются параметры модели системы (например, ко-
эффициент трения в трубопроводе, коэффициент 
усиления клапана). Эти параметры медленно ме-
няются в нормальных условиях, но резко изменя-
ются при возникновении неисправности (напри-
мер, засорение трубопровода, износ клапана). 

2. Методы, основанные на данных (Data-
Driven). Эти методы не требуют глубокого знания 
физики процесса, но нуждаются в больших объ-
емах исторических данных, включающих как 
нормальную работу, так и случаи отказов. 

• Статистический контроль процессов (SPC – 
Statistical Process Control). 

Суть: Используются контрольные карты 
(например, карты Шухарта) для отслеживания 
ключевых параметров. Выход параметра за пре-
делы контрольных границ сигнализирует о по-
тенциальном отказе. 

• Методы машинного обучения (Machine 
Learning). 

Классификация: алгоритмы (например, Support 
Vector Machines, Random Forest, нейронные сети) 
обучаются на размеченных данных, чтобы клас-
сифицировать текущее состояние системы как 
«норма» или конкретный тип отказа («отказ дат-
чика давления», «заклинивание клапана»). 

Кластеризация: алгоритмы (например, k-means) 
находят в данных группы (кластеры), соответству-
ющие разным режимам работы системы, включая 
аварийные. Новые данные, попавшие в «аварий-
ный» кластер, сигнализируют об отказе. 

Нейронные сети: глубокие нейронные сети мо-
гут выявлять сложные, неочевидные зависимости в 
данных, предсказывая отказы на ранней стадии. 

3. Методы, основанные на знаниях (Know-
ledge-Based). Эти методы опираются на опыт экс-
пертов и формализованные логические правила. 

• Экспертные системы (Expert Systems). 
Суть: Создается база знаний в виде правил 

«ЕСЛИ-ТО». Например: «ЕСЛИ давление на выхо-
де насоса P201 падает И температура двигателя 
T201 растет, ТО вероятность отказа насоса P201 
высокая». Эти системы хорошо интерпретируемы, 
но требуют трудоемкого сбора знаний от экспертов. 

• Деревья решений (Fault Trees Analysis – 
FTA). 

Суть: Декомпозиция отказа системы на более 
простые события с помощью логических опера-
торов (И, ИЛИ). Строится от верхнего события 

(например, «остановка транспортировки газа») 
вниз к корневым причинам (отказ датчика, потеря 
питания, ошибка оператора). Используется скорее 
для проектирования системы диагностики и ана-
лиза рисков, чем для онлайн-мониторинга. 

• Нечеткая логика (Fuzzy Logic). 
Суть: Позволяет работать с неточными поняти-

ями, такими как «давление немного высокое» или 
«расход очень низкий». Это полезно, когда границы 
между нормальным и аварийным состоянием раз-
мыты. На основе нечетких правил система выдает 
оценку вероятности того или иного отказа. 

4. Сигнальные методы. Эти методы анали-
зируют непосредственно сигналы с датчиков. 

• Анализ вибрации: применяется для диагно-
стики вращающегося оборудования (газоперекачи-
вающих агрегатов, насосов). Спектральный анализ 
вибросигнала позволяет выявить разбалансировку, 
износ подшипников, кавитацию. Метод основан на 
регистрации и анализе вибрации и шума [7]. 

Диагностируемые неисправности: дисбаланс, 
расцентровка, дефекты подшипников, затирание, 
помпаж. Алгоритм диагностики: 

1. Сбор данных: установка датчиков вибрации 
в контрольных точках (радиальное, осевое 
направление). Запись вибросигнала в широком 
частотном диапазоне. 

2. Обработка сигнала: преобразование сигнала 
из временной области в частотную с помощью 
быстрого преобразования Фурье (БПФ) или вейвле-
тов. Получение виброспектров и вейвлетов. Здесь 
для диагностики широко используется вейвлет-
анализ. Особенность предложенного метода диа-
гностики на основе вейвлетов заключается в том, 
что с помощью непрерывного вейвлет-преобразова-
ния обнаруживаются резкие неисправности, а с по-
мощью дискретного вейвлет-преобразования – по-
степенно развивающиеся. 

3. Анализ и идентификация: 
– Дисбаланс: высокий уровень вибрации на 

частоте вращения (1X). 
– Расцентровка: высокий уровень на 2X, 3X 

от частоты вращения. 
– Дефекты подшипников: появление харак-

терных частот (частота перекатывания тел, часто-
та вращения сепаратора и др.) в высокочастотной 
области. Для прогнозирования возникновения де-
фектов в подшипниках может использоваться 
метод экспоненциальной деградации. Модель 
экспоненциальной деградации предсказывает 
оставшийся полезный срок службы на основе 
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априорных значений параметров и последних из-
мерений. Модель способна обнаруживать значи-
тельную тенденцию деградации в реальном време-
ни и обновляет априорные значения параметров, 
когда становится доступным новое наблюдение. 

– Помпаж: резкий скачок вибрации на низких 
частотах, не связанных с частотой вращения. Во-
обще главная проблема диагностики процесса 
транспортировки газа заключается в диагностике 
помпажа. Здесь предлагается использовать не-
четкую систему диагностики помпажа, работа-
ющую на основе базы данных, аккумулирующих 
правила из многочисленных патентов в данной 
предметной области, эвристических правил на 
основе опыта и интуиции эксплуатационников. 

• Анализ временных рядов: ищутся аномалии 
в форме сигналов – такие, как дрейф, залипание 
значения, появление шума, что характерно для 
отказов датчиков. 

5. Методы из классической теории управле-
ния. Например, метод диагностики на основе ана-
лиза положения корней характеристического поли-
нома в комплексной плоскости, полученных по 
уравнениям системы управления в пространстве 
состояний. Реализуется метод нечеткой системой 
диагностики, задача которой – связать каждую кар-

тину расположения корней характеристического 
полинома с конкретной неисправностью и тем са-
мым обнаружить и локализовать ее. 

Сама диагностика направлена на выявление 
трех основных типов отказов: 

1. Отказы датчиков. 
Проявления: завышение/занижение показа-

ний, «залипание» значения, полный обрыв, по-
вышенный шум. 

Методы диагностики: Анализ остатков, 
сравнение с косвенными измерениями, статисти-
ческие методы. 

2. Отказы исполнительных механизмов (при-
водов, клапанов). 

Проявления: заклинивание, недооткрытие/не-
дозакрытие, повышенное трение, утечка через 
затвор. 

Методы диагностики: анализ остатков (срав-
нение заданного и фактического положения), па-
раметрическая идентификация (изменение харак-
теристик), анализ времени срабатывания. 

3. Отказы технологического объекта (засоре-
ние труб, утечки). 

Проявления: падение давления, изменение гид-
равлического сопротивления, дисбаланс потоков. 

Методы диагностики: балансовые методы 
(материальный и энергетический баланс), волно-

Типовые неисправности оборудования для транспортировки газа и методы их диагностики 
Typical faults of gas transportation equipment and methods for their diagnostics 

Оборудование Неисправность 
оборудования Метод диагностики 

Газоперекачивающие 
агрегаты 

Дисбаланс ротора 

Использование метода диагностики на основе вейвлетов 
Анализ давления, температуры и рабочих скоростей 
методами диагностики на основе анализ рабочих параметров 
(на основе пороговой логики и анализа экстремумов, основе 
нечеткой и нейросетевой эталонной модели, метод FDE-FIE-
SVM, метод соотношения паритета) 

Несовпадение осей 
(расцентровка) Использование метода диагностики на основе вейвлетов 

Износ и разрушение 
подшипников 
(качения  
и скольжения) 

Метод экспоненциальной деградации 
Использование метода диагностики на основе вейвлетов 
Мониторинг температуры подшипниковых узлов, давления 
масла на основе анализ рабочих параметров (на основе 
пороговой логики и анализа экстремумов, основе нечеткой  
и нейросетевой эталонной модели, метод FDE-FIE-SVM, 
метод соотношения паритета) 

Механический 
контакт ротора  
и статора (затирание) 

Использование метода диагностики на основе вейвлетов 
Мониторинг потребляемой мощности, температуры 
подшипников на основе анализ рабочих параметров (на 
основе пороговой логики и анализа экстремумов, основе 
нечеткой и нейросетевой эталонной модели, метод FDE-FIE-
SVM, метод соотношения паритета) 

Аэродинамическая 
неустойчивость: 
помпаж 

Нечеткая система диагностики помпажа 
Мониторинг давления и расхода на основе анализ рабочих 
параметров (на основе пороговой логики и анализа 
экстремумов, основе нечеткой и нейросетевой эталонной 
модели, метод FDE-FIE-SVM, метод соотношения паритета) 
Использование метода диагностики на основе вейвлетов 

Трещины и уста-
лостные разрушения 
лопаток рабочего 
колеса 

Использование метода диагностики на основе вейвлетов 
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вые методы обнаружения утечек, методы пара-
метрической идентификации. 

Подводя итог изложенному материалу можно 
свести оборудование газотранспортного комплек-
са, его неисправности и основные методы их диа-
гностики в таблицу. 

Заключение. Обеспечение надежности га-
зотранспортной инфраструктуры требует систем-
ного подхода к диагностике. Типовые неисправ-
ности оборудования имеют четкие диагностиче-
ские признаки, которые могут быть выявлены с 
помощью специализированных методов. 

Наиболее эффективна комплексная диагно-
стика, сочетающая разные методы и алгоритмы 
диагностики. Разработанные алгоритмы обработ-
ки сигналов позволяют не только констатировать 
факт неисправности, но и идентифицировать ее 
тип и степень развития. 

Перспективно также создание и внедрение ин-
теллектуальных систем диагностики, которые на 
основе методов машинного обучения и анализа 
больших данных позволяют реализовать предик-
тивную модель обслуживания, минимизирующую 
вероятность внезапных отказов и оптимизирую-
щую затраты на ремонт. 

Таким образом, углубленный анализ рабочих 
параметров и интеллектуальные системы диагно-
стики представляют собой эволюцию от реактив-
ного к проактивному управлению надежностью. 
Комплексное использование «цифровых двойни-
ков», методов машинного обучения и прогнозной 
аналитики позволяет не только предотвращать 
катастрофические отказы, но и оптимизировать 
ресурс оборудования и логистику ремонтов, пе-
реводя газотранспортную отрасль на качественно 
новый уровень технологической зрелости. 

Окончание таблицы 

Оборудование Неисправность 
оборудования Метод диагностики 

Запорная  
и регулирующая 
арматура 

Негерметичность 
уплотнительных 
элементов 

Использование метода диагностики на основе вейвлетов 
Контроль давления в системе на основе анализа рабочих 
параметров (на основе пороговой логики и анализа 
экстремумов, основе нечеткой и нейросетевой эталонной 
модели, метод FDE-FIE-SVM, метод соотношения паритета) 

Неполное 
открытие/закрытие 
задвижек и кранов 

Проверка точности позиционирования 
Измерение времени полного хода 
Сравнение с паспортными характеристиками 
Спектральный анализ вибрации 
Корреляционный анализ сигналов 
Тестовые циклы открытия/закрытия 
Проверка на различных режимах 

Отказы систем 
управления 

Мониторинг потребляемого тока 
Контроль напряжения питания 
Анализ характеристик пусковых токов 
Мониторинг температуры двигателя 
Тепловой контроль силовой электроники 
Анализ состояния подшипников 
Мониторинг давления воздуха/жидкости 
на основе анализ рабочих параметров (на основе пороговой 
логики и анализа экстремумов, основе нечеткой и 
нейросетевой эталонной модели, метод FDE-FIE-SVM, 
метод соотношения паритета) 

Линейная часть 
магистрального 
газопровода 

Потеря металла 
Магнитные и ультразвуковые дефектоскопы 
Ультразвуковая толщинометрия 
Радиографический контроль 

Механические 
повреждения 

Магнитные и ультразвуковые дефектоскопы 
Лазерное сканирование внутренней поверхности трубы 
БПЛА и спутниковый мониторинг 
Инфракрасная съемка трассы 
Георадарное обследование 
Цифровые двойники трубопроводов 
Прогнозные модели развития повреждений на основе 
моделей прогнозирования остаточного ресурса  

Дефекты сварных 
швов 

Магнитные и ультразвуковые дефектоскопы 
Магнитопорошковый или капиллярный контроль 
Ультразвуковой или радиографический контроль 
Цифровые двойники сварных соединений 

Разрушение 
изоляционного 
покрытия 

Системы прогноза остаточного ресурса на основе моделей 
прогнозирования остаточного ресурса 
Электрометрические методы 
Акустические методы 
Термографические методы 
БПЛА и спутниковый мониторинг 
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