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Аннотация. Рассматривается возможность повышения достоверности телеметрической информации 
при проведении испытаний и эксплуатации летательных аппаратов, приведены модели оценки воздей-
ствий внешних дестабилизирующих факторов на достоверность телеметрической информации. Прове-
дена оценка вероятности ошибки на бит телеметрической информации в различных условиях помехо-
вой обстановки. Рассмотрены воздействие аддитивного белого гауссова шума на радиолинии КИМ2-ЧМ, 

КИМ2-ФМ, GMSK и OQPSK и помех «немодулированная несущая», многочастотная помеха, шумовая при-

цельная по частоте помеха на структуру типового сигнала вида модуляции КИМ2-ЧМ. На основе получен-

ных в результате моделирования данных предлагается проводить выбор методов и алгоритмов для по-
вышения достоверности телеметрической информации.  
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Abstract. The article considers the possibility of increasing the reliability of telemetric information during test-
ing and exploitation of air vehicles, provides models for evaluation the impact of destabilizing factors on relia-
bility of telemetry. The bit error rate of telemetry information has been estimated in various reception condi-
tions. The effects of additive white Gaussian noise, «unmodulated carrier» interference, multi-frequency inter-
ference and frequency-targeting noise interference on the structures of a typical radio links are considered. 
Based on the presented models and the data obtained, the implementation of methods and algorithms for in-
creasing the reliability of telemetric information is proposed.  
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Введение. В настоящее время развитие ин-
фраструктуры испытательных полигонов и кос-
модромов при проведении летных испытаний и 
эксплуатации (ЛИЭ) летательных аппаратов (ЛА) 
оказывает существенное влияние на достовер-
ность телеметрической информации (ТМИ) си-
стемы информационно-телеметрического обеспе-
чения (СИТО). По результатам анализа ТМИ под-
тверждаются заданные летно-технические харак-
теристики ЛА и оценивается его техническое 
состояние при эксплуатации. Необходимость вы-
сокой достоверности ТМИ обусловлена уникаль-
ностью и высокой стоимостью ЛИЭ ЛА. Развитие 
инфраструктуры полигонов и космодромов при-
водит к появлению новых электромагнитных 
внешних дестабилизирующих факторов (ВДФ) в 
виде непреднамеренных (неизвестная и динамич-
но меняющаяся помеховая обстановка, движущи-
еся источники помех, многолучевое распростра-
нение сигналов) и преднамеренных (средства ра-
диоэлектронного подавления (РЭП) нарушителя) 
помех при приеме на приемно-регистрирующую 
аппаратуру (ПРА). Эти сложные условия приема 
ТМИ, характеризующиеся низкими отношениями 
сигнал/шум (ОСШ) и сигнал/помеха (ОСП) (зна-
чения от 4 дБ и менее), приводят к искажениям 
передаваемой с ЛА информации, к нарушению 
нормального функционирования системы син-
хронизации ПРА. Срыв функционирования син-
хронизации ПРА приводит к безвозвратным поте-
рям всего потока ТМИ до момента полного вос-
становления процесса синхронизации. 

Анализ последетекторных записей наземных 
приемно-регистрирующих станций МПРС-ПМ 
измерительных пунктов трасс ЛИЭ ЛА показал, 
что при приеме ТМИ, передаваемой в зоне радио-
видимости одного измерительного пункта, воз-
можна потеря достоверности до 20 % ее объема. 
Такие ситуации встречаются достаточно часто, 
например в [1] представлены сведения о потерях 
ТМИ при сеансах измерений запуска ракеты-
носителя «Союз». Таким образом, статистика под-
тверждает актуальность разработки методов по-

вышения достоверности ТМИ в сложных условиях 
на всех этапах приема и обработки. 

В требованиях, предъявляемых к радиотеле-
метрическим системам (РТС), потери ТМИ более 
2 % от общего объема ТМИ считают отказом обо-
рудования. При приеме на ПРА требования по 
потере ТМИ нормируется таким показателем до-
стоверности ТМИ, как вероятность ошибки на 
бит (ВОБ). Зоной устойчивого приема установлен 
диапазон ВОБ от 10–3 до 10–5. В случаях невоз-
можности получения требуемого качества ТМИ в 
реальном масштабе времени (при ВОБ более 10–3) 
необходимо осуществление послесеансной обра-
ботки. Повышение достоверности ТМИ возмож-
но на 3 этапах этого вида обработки [2]: 

1) додетекторная обработка (на этапе оциф-
ровки отсчетов сигналов с приемных устройств 
на промежуточной частоте (ПЧ) и проведения их 
дальнейшей обработки различными методами); 

2) детекторная обработка (на этапе демодуля-
ции и дальнейшей обработки получившихся ви-
деосигналов); 

3) последетекторная обработка (на этапе вос-
становления структуры данных битового потока). 

Существующие методы повышения досто-
верности ТМИ, реализованные на этапах детек-
торной и последетекторной обработки (опти-
мальный прием сигналов, помехоустойчивое ко-
дирование, разнесенный прием), не в полной ме-
ре позволяют эффективно противодействовать 
ВДФ и восстанавливать искаженную ТМИ. Мето-
ды оптимального приема (адаптивные простран-
ственная и режекторная фильтрации) сложны в 
реализации и приводят к ухудшению разрешаю-
щей способности и ошибкам по восстанавливае-
мому сигналу при обратном преобразовании. По-
мехоустойчивое кодирование требует введения 
избыточности информации, для чего, в свою оче-
редь, необходимо повышение вычислительных 
ресурсов бортовых информационно-телеметри-
ческих систем (БИТС) и повышения информа-
тивности информационно-телеметрических средств 
(ИТС). Наиболее эффективные методы разнесен-
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ного приема требуют использования дополни-
тельной ПРА в местах расположения трассы ЛИЭ 
ЛА, что требует больших материальных затрат и 
не всегда возможно [3]. 

Перспективные методы повышения достовер-
ности ТМИ в условиях воздействий ВДФ на ПРА 
основаны на режиме послесеансной додетектор-
ной обработки ТМИ методами цифровой обра-
ботки сигналов (ЦОС). Преимущество этого вида 
обработки заключается в возможности восста-
новления амплитудных, частотных и фазовых 
составляющих сигналов по файлам регистрации 
отсчетов аналого-цифрового преобразователя 
(АЦП) приемного устройства посредством при-
менения различных итерационных алгоритмов. 
Основные недостатки – потеря оперативности 
телеконтроля ЛИЭ ЛА, а также существенные 
затраты вычислительных ресурсов. 

Постановка задачи. С целью разработки 
наиболее эффективных и ресурсоемких методов 
послесеансной додетекторной обработки необхо-
дима теоретически обоснованная модель аб-
страктного формализованного математического 
моделирования на ЭВМ имитационным методом. 
Она должна быть ориентирована на послесеанс-
ную обработку принятых и зарегистрированных 
потоков оцифрованных отсчетов сигналов на 
промежуточной частоте, давать возможность 
оценить влияние различных помех на достовер-
ность приема ТМИ различных радиолиний, отли-
чающихся реализацией алгоритмов демодуляции 
и принятия решений о принятом символе, сфор-
мировать базу данных по возможным воздействи-
ям ВДФ и их последствиям при приеме ТМИ, 
выбрать параметры додетекторной регистрации, а 
также оценить эффективность реализованных 
методов додетекторной обработки. 

Имеющиеся на данный момент модели ра-
диоканалов передачи ТМИ [4]–[7] не в полной 
мере позволяют решить поставленные задачи. 
В связи с этим цель данной статьи – разработка 
модели оценки воздействий ВДФ на достовер-
ность ТМИ при ЛИЭ ЛА, анализ результатов мо-
делирования и оценка теоретической обоснован-
ности использования данных моделей. 

Разработка модели оценки воздействий 
ВДФ на достоверность ТМИ при ЛИЭ ЛА. Сре-
ди методов передачи ТМИ ЛА наиболее распро-
странены двухпозиционная кодоимпульсная ма-

нипуляция – частотная модуляция (КИМ2-ЧМ) и 
двухпозиционная кодоимпульсная манипуляция – 
фазовая модуляция (КИМ2-ФМ). По рекоменда-
циям Консультационного комитета по космиче-
ским информационным системам (CCSDS) все 
большее применение находят такие виды модуля-
ции, как гауссовская частотная манипуляция с 
минимальным частотным сдвигом (Gaussian Min-
imum Shift Keying, GMSK) и квадратурная фазо-
вая манипуляция со сдвигом (Offset Quadrature 
Phase Shift Keying, OQPSK) [8]. 

КИМ2-ЧМ – это разновидность угловой мо-
дуляции, при которой меняется частота модули-
рованного сигнала, а амплитуда остается неиз-
менной. Математическое выражение сигнала 
КИМ2-ЧМ имеет вид 

 ЧМ н( ) cos ( ( ) ) φ ,S t A f e t f     

где t – время; A – амплитуда сигнала; fн – несущая 
частота; e(t) – модулирующий сигнал, принима-
ющий значения символов «0» или «1» информа-
ционной последовательности; ∆f – девиация ча-
стоты, т. е. отклонение значения частоты модули-
рованного сигнала от значения частоты несущей; 
φ – фаза сигнала. 

Спектр радиосигнала с модуляцией КИМ2-
ЧМ зависит от индекса ЧМ mf  = ∆f/F, где F – ча-
стота модулирующего сигнала. 

Закон формирования фазоманипулированного 
сигнала КИМ2-ФМ состоит в сопоставлении 
цифровому модулирующему сигналу определен-
ной фазы несущего сигнала. Выражение для сиг-
нала КИМ2-ФМ примет вид 

ФМ н ф 0( ) cos ( ( ) φ ) ,S t A f k e t      

где kф – коэффициент пропорциональности, свя-
зывающий изменение фазы с управляющим сиг-
налом e(t); φ0 – начальная фаза при e(t) = 0. 

GMSK используется в современных системах 
цифровой радиосвязи GSM и относится к сигна-
лам с эффективным использованием полосы про-
пускания [8]. 

Принцип формирования GMSK-сигнала по-
добен принципу КИМ2-ЧМ, но имеет следующие 
особенности: 

1) модулирующий сигнал e(t) предварительно 
пропускается через фильтр Гаусса. За счет сгла-
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женных фронтов фаза модулированного сигнала 
имеет непрерывный набег, что сужает его полосу; 

2) индекс ЧМ mf  = 0.5, что также сужает полосу. 
Фильтр Гаусса – цифровой фильтр, имеющий 

импульсную характеристику в виде функции 
Гаусса 

2( )
ln(2)2( ) ,

ln(2)

Bt

h t B e
 


  

где B – полоса пропускания фильтра по уровню 
3 дБ. 

Формирование сигнала OQPSK состоит в раз-
делении последовательного битового потока на 
параллельные синфазный (I – in-phase) и квадра-
турный (Q – quadrature) каналы, где синфазный 
канал принимает значение нечетных битов, а 
квадратурный – четных. Квадратурный канал за-
держивается на один период информационного 
сигнала, затем на фазовом модуляторе в соответ-
ствии с комбинацией I и Q каналов формируется 
радиосигнал, имеющий начальные фазы φ0 = 
= kπ/4, где k = 1, 2, 3, 4. Благодаря задержке квад-
ратурного канала устраняется скачок фазы на π, в 
отличие от схемы формирования QPSK-сигнала. 

Рассмотрим возможные виды помех, воздей-
ствующие на прием ТМИ [9]. 

Шумовые помехи считаются стационарными 
случайными процессами с нормальным законом 
распределения мгновенных значений, одномерная 
плотность распределения вероятности амплитуды 
случайного процесса которых описываются вы-
ражением 

 2

22
1( ) exp ,

2σ2 σ

u UW u
   
  

 

где u – мгновенное значение шумового напряже-
ния; σ2 – дисперсия шума; U  – среднее значение 
шумового напряжения. 

При нормальном законе распределения мгно-
венных значений шумовой помехи закон распреде-
ления огибающей U описывается законом Рэлея 

2 2
э э

( ) exp ,
2

u uW u
U U

   
 

 

где 2
эU  – дисперсия шумовой помехи. 

В качестве помехи «немодулированная несу-
щая» рассматривается сигнал согласно описанию 

 п п п( ) cos ( ) φ ,I t A f t   

где Aп, fп, φп – амплитуда, частота и фаза помехи 
соответственно.  

В качестве прицельных и заградительных по-
мех также могут использоваться различные виды 
многочастотных помех, описываемых согласно 
формуле 

 
 

1 1 1п п п

п п п

( ) cos ( ) φ ...

cos ( ) φ ,
m m

I t A f t

A f t

   

 
 

где m – номер составляющей гармоники помехи. 
В канале связи помеха I(t) и шум N(t) адди-

тивно влияют на телеметрический сигнал F(t), и 
поэтому их воздействие математически имеет вид 
выражения 

*( ) ( ) ( ) ( ).F t F t I t N t    

Для приема сигналов рассматриваемых ра-
диолиний могут применяться различные реализа-
ции приемников ПРА. Например, для радиолинии 
КИМ2-ЧМ и GMSK используются 3 вида прием-
ников: одноканальный, двухканальный и четы-
рехканальный. 

В наземной ПРА используется четырехка-
нальный некогерентный приемник, использую-
щий квадратурное разложение принимаемых сиг-
налов. Схема четырехканального некогерентного 
приемника представлена на рис. 1, где F*(t) – 
принимаемый аналоговый сигнал; S0I(t), S0Q(t), 
S1I(t), S1Q(t) – опорные синфазные и квадратур-
ные составляющие сигналов символов «0» и «1» 
информационной последовательности; Ф0 и Ф1 – 

фильтры сигналов символов «0» и «1»; 
0

T

 – ин-

тегратор; * * * *
0 0 1 1,  , ( ) ( ) ( ) ( ) ,  I Q I QA t A t A t A t  – преоб-

разованные синфазные и квадратурные состав-
ляющие сигналов символов «0» и «1»; n – номер 
отсчета; T – время дискретизации АЦП; δ[nT] – 
дельта-функция АЦП; Z0I[nT], Z0Q[nT], Z1I[nT], 
Z1Q[nT] – оцифрованные синфазные и квадратур-
ные составляющие сигналы символов «0» и «1»; 
∑ – сумматор;   – устройство сравнения; S*[nT] – 
выходной сигнал. 

Квадратурное разложение принимаемых сиг-
налов F*(t) в S*[nT] позволяет получить значение 
мгновенной амплитуды U[nT], частоты f[nT] и 
фазы φ[nT] сигнала согласно формулам 
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где UI[nT] и UQ[nT] – синфазная и квадратурная 
составляющие сигнала. 

Моделирование процессов воздействий ВДФ 
на ТМИ и их влияния на достоверность при ЛИЭ 
ЛА предлагается проводить для: 

1) определения методов и алгоритмов повы-
шения достоверности ТМИ на этапе послесеанс-
ной обработки в каждой конкретной ситуации; 

2) оценки потенциальной эффективности мето-
дов и алгоритмов повышения достоверности ТМИ; 

3) определения состояния радиолинии; 
4) выбора параметров системы додетекторной 

регистрации сигналов; 
5) отладки специального программно-матема-

тического обеспечения методов и алгоритмов 
компенсации помех и адаптивной фильтрации 
сигналов; 

6) формирования базы данных по возможным 
воздействиям ВДФ и их последствиям при при-
еме ТМИ. 

Спектральный анализ ситуации воздействий 
помех на сигнал позволяет принять решение о 
выборе метода повышения достоверности ТМИ. 
Полоса частот видеотракта приемного устройства 
∆fв рассчитана исходя из максимальной информа-
тивности РТС и определяется для цифровых видов 
модуляции как ∆fв = 1/tсим, где tсим – длительность 
символа. В связи с данным обстоятельством все 
спектральные составляющие, соответствующие 
условию f  ≥ 1/tсим, где f – частота спектральной со-
ставляющей, для получения наибольшей эффектив-
ности повышения достоверности ТМИ необходимо 
подавить. Для реализации подавления такого типа в 
условиях с низкой эффективностью фильтров с 
фиксированными характеристиками и невозможно-
стью точного определения параметров фильтрации 
возможна реализация фильтров с применением 
адаптивных алгоритмов на основе перестраиваемых 
весовых коэффициентов. 

При моделировании процессов послесеанс-
ной додетекторной обработки ТМИ необходима 
реализация моделей как используемых сигналов 
радиолинии ТМИ и возможного воздействия по-
мех ВДФ, так и отлаживаемых устройств ЦОС с 
целью оценивания эффективности того или иного 
алгоритма обработки сигналов. 

На рис. 2 представлена схема имитационного 
моделирования на ЭВМ процессов воздействий 
ВДФ на прием ТМИ и оценки влияния на достовер-
ность при ЛИЭ ЛА, на рис. 3 – схема реализации 
модели процессов послесеансной додетекторной 
обработки когерентной компенсацией помех. 

 

Рис. 1. Схема четырехканального некогерентного приемника 
Fig. 1. The scheme of a four-channel incoherent receiver 
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Предварительный этап моделирования заклю-
чается в генерации битовой последовательности 
моделируемой структуры сигналов, образования 
отсчетов сигнала на промежуточной частоте, мо-
делирования прохождения сигнала в радиоканале 
под воздействием помех «немодулированная не-
сущая», многочастотная, шумовая прицельная по 
частоте, а также регистрации в файл отсчетов 
канала приема. В зависимости от применяемых 
алгоритмов додетекторной обработки возможна 
регистрация в файлы отсчетов как основного, так 
и дополнительных каналов. 

На этапе непосредственного моделирования 
обрабатываются файлы регистрации отсчетов 
основного и дополнительных каналов в модуле 
алгоритма додетекторной обработки, демодуля-

ция сигналов по полученным отсчетам, а также 
дальнейшее восстановление структуры данных. 
Далее проводится оценка информативных харак-
теристик модели (расчет ОСШ и ОСП, ВОБ), их 
обработка и анализ полученных результатов. 

На рис. 4 представлена схема алгоритма мо-
делирования процессов воздействий ВДФ на при-
ем ТМИ при ЛИЭ ЛА и оценки влияния на до-
стоверность ТМИ. Рассмотрим алгоритм более 
подробно: 

1. Подготовка исходных данных моделирова-
ния. Исходными данными для проведения моде-
лирования служат характеристики сигнала, поме-
хи и шума для регулировки ОСШ и ОСП, частоты 
сигнала и помехи, частота следования импульсов 
помех для имитации условий воздействий ВДФ, 

 

Рис. 2. Схема имитационного моделирования воздействий ВДФ на прием ТМИ при ЛИЭ ЛА  
и оценки влияния на достоверность ТМИ 

Fig. 2. The scheme of simulation modeling of the effects of destabilizing factors  
on the reception of telemetry and assessment 
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Рис. 3. Схема реализации модели процессов послесеансной додетекторной обработки  
когерентной компенсацией помех 

Fig. 3. Implementation scheme of the process model of post-session pre-detector processing  
by coherent interference compensation 
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параметры сигналов (информативность, количе-
ство каналов). Большое количество переменных 
факторов и интервалов их значений обусловлено 
необходимостью определения минимального ко-
личества имитационных экспериментов для со-
кращения временных и вычислительных затрат 
на моделирование на основе теории планирова-
ния эксперимента [10], [11]. 

2. Ввод исходных данных эксперимента моде-
лирования для определенного набора значений 
факторов в соответствии с обоснованным планом 
эксперимента. 

3. Запуск эксперимента моделирования. 
4. Анализ визуальных отображений сигнала: 

оценка искажений формы и спектра сигнала, а 
также расчет характеристик (ОСШ и ОСП, ВОБ). 

5. Регистрация результатов оценки для опре-
деленного набора значений факторов для даль-
нейшей статистической обработки. 

6. Ввод очередного набора значений плана 
эксперимента и проведение следующего (l + 1)-го 
эксперимента моделирования (переход в п. 2). 
При реализации минимального количества L 
имитационных экспериментов переход в п. 7. 

7. Построение графиков зависимостей ВОБ от 
ОСШ и ОСП для смоделированных случаев. 

8. Анализ результатов моделирования. 
Имитационное моделирование процессов по-

слесеансной додетекторной обработки ТМИ в 
условиях воздействий ВДФ предполагает, что 
большинство ВДФ xj во время функционирования 
ПРА во время проведения ЛИЭ ЛА являются слу-
чайными величинами, определяемыми своими 
законами распределения. Показатели качества 
функционирования служат функционалами от 
амплитуд сигналов, помех, шума, частот сигналов 
и помех, девиации частоты и фазы, информатив-
ности и др. Таким образом, согласно теории пла-
нирования эксперимента [10], [11]: 

 1 2ˆ ˆ ( ), ( ), ..., ( ), .      .., ( ) ,i i j rY W x W x W x W x      (1) 

где ^ – символ случайной функции; xj – случайная 
независимая переменная, характеризующая пока-
затель достоверности ТМИ; W(xj) – плотность 
вероятности случайной величины xj. 

Плотность вероятности W(xj) характеризуется 
параметрами закона распределения x1, x2, …, xj, 
…, xr – такими, как математическое ожидание 

jX  и дисперсия 2 j  случайной величины xj и др., 

поэтому зависимость вида (1) можно заменить 
зависимостью вида 

 11 12 21ˆ ˆ [ , , ..      ., , ..., ].i i rkY x x x x   (2) 

 

Рис. 4. Схема алгоритма моделирования воздействий 
ВДФ на прием ТМИ при ЛИЭ ЛА 
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Случайный характер отклика îY  обусловлива-

ется стохастическим характером зависимости ˆ .i  
В имитационном моделировании отклик – это 
сложная функция от входных переменных и вы-
ражается явно только с помощью вычислитель-
ной программы. Зависимость ̂i  при моделиро-
вании формирует моделирующая программа, 
осуществляющая генерацию отсчетов сигналов, 
помех и шума с соответствующими законами 
распределения случайных величин, функциони-
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рование алгоритма повышения достоверности 
ТМИ и накопление статистических данных, необ-
ходимых для вычисления величины ˆ .iY  

Анализ зависимости вида (2) опирается на 
методы регрессионного анализа. Сущность ре-
грессионного анализа состоит в замене стохасти-
ческой зависимости ̂i  между откликом îY  и пе-
ременными x11, …, xrk некоторой детерминиро-
ванной зависимостью , достаточно хорошо ап-
проксимирующей основные свойства исходной 
стохастической зависимости. В регрессионном 
анализе используется замена зависимости вида 
(2) оценкой математического ожидания jX  слу-

чайной величины ˆ :iY  

 1 1 1 1ˆ ( , ..., ) ( , ...,   ) i l r l rE Y x x x x   [11]. 

Для построения выборочных эксперимен-
тальных кривых зависимостей показателей каче-
ства от независимых переменных применяются 
непрерывные гладкие функции, поэтому модели 
показателей качества χ(x1, …, xp) целесообразно 
искать в виде обобщенного полинома Колмогоро-
ва–Габора [11]: 

1 0
1 1 1

1 1 1
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где p – номер фактора. 
В целях имитационного моделирования воз-

действий ВДФ на прием ТМИ при ЛИЭ ЛА необ-
ходимо определить коэффициенты уравнения ре-
грессии для полного p-факторного планирования 
эксперимента. В случае двух факторов (ОСШ и 
ОСП) уравнение регрессии имеет вид 

2 2
0 1 1 2 2 12 1 2 11 1 22 2 ,y b b x b x b x x b x b x       

где b0 – свободный член; b1, b2, b12 – коэффици-
енты взаимодействия факторов; b11, b22 – коэф-
фициенты, отражающие влияние факторов. 

Вопросы выбора оптимального плана экспе-
римента в данной статье не рассматриваются. 

В специальном программно-математическом 
обеспечении (СПМО) информационно-управля-
ющего комплекса испытательного стенда штат-
ных и перспективных цифровых радиолиний [12] 
представлена модель воздействий на ТМИ ВДФ в 

виде аддитивного белого гауссова шума (АБГШ). 
К основным задачам данного СПМО относятся 
визуальное представление моделей штатных и 
перспективных цифровых радиолиний, а также 
оценка качества радиоканала под воздействием 
АБГШ посредством симуляции передачи, приема 
и обработки радиосигнала и сравнения получен-
ных статистик с теоретическими формулами. Кон-
кретной радиолинии соответствуют различные 
схемы приемников и предлагаются на выбор поль-
зователю для сравнения качества как между вида-
ми приемников, так и между видами модуляции. 

Имитационная модель додетекторной обработ-
ки ТМИ структуры цифровых циклических сигна-
лов в условиях воздействий ВДФ [13] предназначе-
на для исследования методов и алгоритмов додетек-
торной обработки ТМИ структуры цифровых цик-
лических сигналов в условиях воздействий ВДФ в 
среде визуального программирования GNU Radio 
Companion [14]–[16]. Данная модель может быть 
использована при моделировании условий передачи 
радиосигналов от БИТС в условиях воздействий 
помехи «немодулированная несущая», многоча-
стотной помехи, шумовой прицельной по частоте 
помехи, а также для разработки методов и алгорит-
мов повышения достоверности ТМИ. 

Результаты оценки воздействий ВДФ на 
прием ТМИ при ЛИЭ ЛА. Рассмотрим резуль-
таты оценки воздействий ВДФ на достоверность 
ТМИ при ЛИЭ ЛА, полученные при функциони-
ровании описанных ранее моделей. В рамках ис-
следования проводилось имитационное модели-
рование воздействия АБГШ на радиолинии 
КИМ2-ЧМ, КИМ2-ФМ, GMSK, OQPSK в диапа-
зоне ОСШ от –3 до 10 дБ, а также АБГШ и ВДФ в 
виде помех «немодулированная несущая», многоча-
стотная и прицельная по частоте на сигнал для 
ОСШ 4, 7 и 10 дБ и ОСП диапазона от –3 до 4 дБ. 

На рис. 5 представлены оценки зависимостей 
ВОБ от ОСШ при воздействии АБГШ на ра-
диолинии КИМ2-ЧМ, КИМ2-ФМ, GMSK, OQPSK, 
полученные в СПМО [13]. 

Анализ результатов моделирования позволяет 
сделать вывод о том, что теоретические данные [16] 
и разработанные имитационные модели [12], [13] 
соответствуют друг другу, поэтому можно считать 
дальнейший анализ в части расчета энергетических 
(ОСШ и ОСП) и вероятностных (ВОБ) характери-
стик радиолиний, проведенных на основе этих мо-
делей, теоретически обоснованным. 
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Рис. 5. Графики зависимостей ВОБ  
от ОСШ моделируемых радиолиний  

Fig. 5. Graphs of the dependence of the BER  
on the SNR of the simulated radio lines 
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На рис. 6 представлены графики спектрально-
го анализа смоделированных ситуаций условий 
воздействий ВДФ на сигнал вида модуляции 
КИМ2-ЧМ для ОСШ 4 дБ и ОСП 1 дБ: а – воз-
действие шума, б – воздействие помехи «немоду-
лированная несущая», в – воздействие многоча-
стотной помехи, г – воздействие шумовой при-
цельной по частоте помехи. На рис. 7 показаны 

результирующие графики зависимостей воздей-
ствий помех смоделированных ситуаций, где 
IПНН – помеха «немодулированная несущая», 
IМП – многочастотная помеха, IПЧП – шумовая 
прицельная по частоте помеха. 

Проанализировав графики зависимостей на 
рис. 7, делаем вывод о наиболее дестабилизиру-
ющем эффекте воздействия на сигнал вида моду-
ляции КИМ2-ЧМ при ОСП в диапазоне от –3 до 
4 дБ шумовой прицельной по частоте помехи для 
всех рассматриваемых ОСШ. 

По результатам расчетов зависимостей для 
рассматриваемых случаев получены уравнения 
регрессии полного двухфакторного эксперимента: 

– для воздействия помехи «немодулированная 
несущая»: 

1 20.346 0.0095 0.2283y x x     

 2 2
1 2 1 20.0095 0.0155 0.0795 ;x x x x    (4) 

– для воздействия многочастотной помехи: 

1 20.28025 0.001173 0.20875y x x     

 2 2
1 2 1 20.014625 0.00806 0.030883 ;x x x x    (5) 

– для воздействия шумовой прицельной по 
частоте помехи: 

1 2 1 20.37 0.00749 0.205 0.01125y x x x x      

 2 2
1 20.0225 0.11 ,x x   (6) 

где x1 и x2 – нормированные значения ОСШ и 
ОСП соответственно. 

На рис. 8 представлен сравнительный анализ 
полученных линий регрессии и графиков зависи- 
 

      
 

      

Рис. 6. Графики спектрального анализа воздействий помех на сигнал типовой структуры:  
а – шум; б – помеха «немодулированная несущая»; в – многочастотная помеха;  

г – шумовая прицельная по частоте помеха 
Fig. 6. Graphs of spectral analysis of interferences effects on a typical structure signal:  
а – noise; б – «unmodulated carrier» interference; в – multi-frequency interference;  

г – frequency-targeted noise interference 
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мостей, построенных по результатам моделиро-
вания: штриховыми линиями (2) показаны зави-
симости ВОБ от ОСШ и ОСП рис. 7, сплошными 
(1) – линии регрессии, построенные по уравнени-

ям регрессии (4)–(6). Из рисунка видно, что ли-
нии регрессии совпадают с графиками зависимо-
стей, поэтому считаем полученные регрессион-
ные зависимости адекватными. 

 

                         
 
 
 
 

                             
 
 
 
 Рис. 7. Графики зависимостей воздействий помех на сигнал типовой структуры: 

а – ВОБ от ОСШ для АБГШ; б – ВОБ от ОСП для ОСШ 10 дБ;  
в – ВОБ от ОСП для ОСШ 7 дБ; г – ВОБ от ОСП для ОСШ 4 дБ 

Fig. 7. Graphs of the effects of interferences on the signal of a typical structure: 
а – BER on the SNR for the AWGN; б – BER on the SIR for the SNR of 10 dB;  
в – BER on the SIR for the SNR of 7 dB; г – BER on the SIR for the SNR of 4 dB 
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 Рис. 8. Графики сравнительного анализа линий  

регрессии и зависимостей ВОБ к ОСШ и ОСП,  
полученных в результате моделирования  

воздействий помех на сигнал типовой структуры:  
а – воздействие помехи «немодулированная несущая»;  

б – воздействие многочастотной помехи;  
в – воздействие шумовой прицельной по частоте помехи 
Fig. 8. Graphs of the regression lines and the dependences  
of the BER on the SIR and SNR of the signal of a typical 

structure: а – «unmodulated carrier» interference;  
б – multi-frequency interference; в – frequency-targeted 

noise interference 
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Из анализа зависимостей, представленных на 
рис. 7, можно сделать вывод о наиболее негатив-
ном влиянии на достоверность ТМИ вида моду-
ляции КИМ2-ЧМ многочастотной помехи и 
наименее негативном влиянии помехи «немоду-
лированная несущая». 

Результаты имитационного моделирования 
предлагается использовать в качестве исходных 
для оценки эффективности разрабатываемых ме-
тодов послесеансной додетекторной обработки 
ТМИ для вида модуляции КИМ2-ЧМ. В даль-
нейшем на основе представленных моделей [12], 
[13], а также их модификаций для реализации 
других видов модуляций, и полученных по ре-
зультатам имитационного моделирования зави-
симостей, необходимо осуществлять выбор мето-
дов и соответствующих им средств адаптивной 
фильтрации и/или когерентной компенсации по-
мех для повышения достоверности ТМИ в режи-
ме послесеансной обработки [2]. 

Заключение. В статье представлены резуль-
таты разработки модели оценки воздействий ВДФ 
на достоверность ТМИ при ЛИЭ ЛА: приведены 
модели оценки воздействий ВДФ на достовер-
ность ТМИ в сложных условиях помеховой об-
становки на основе имитационного моделирова-
ния на ЭВМ; показаны результаты оценок воздей-
ствий на достоверность ТМИ ВДФ вида АБГШ 
на радиолинии КИМ2-ЧМ, КИМ2-ФМ, GMSK, 
OQPSK и помех «немодулированная несущая», 
многочастотная, шумовая прицельная по частоте 
на радиолинию КИМ2-ЧМ; указано применение 
теории планирования эксперимента и получения 
оценок достоверности ТМИ в виде регрессион-
ной зависимости. Полученные результаты моде-
лирования показывают сходство с графиками 
ОСШ к ВОБ, основанными на теоретических 
расчетах [17], и позволяют сделать вывод об их 
теоретической обоснованности. Графики могут 
служить в качестве исходных для оценки эффек-
тивности разрабатываемых методов послесеанс-
ной додетекторной обработки ТМИ. На основе 
представленных моделей [12], [13] и полученных 
по результатам имитационного моделирования 
зависимостей необходимо осуществлять выбор 
методов и соответствующих им средств адаптив-
ной фильтрации и/или когерентной компенсации 
помех для повышения достоверности ТМИ в ре-
жиме послесеансной обработки. 
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