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Аннотация. Исследование направлено на разработку адаптируемой скалярной системы управления 
преобразователя частоты, управляющего асинхронными электрическими машинами, эксплуатируемы-
ми в городском электротранспорте. Разработанная система включает в свою структуру классическое 
скалярное управление, но позволяет поддерживать оптимальные режимы работы электродвигателя в 
широком диапазоне входного питающего напряжения (250…800 В) посредством ограничения задания 
номинальной частоты вращения и добавления коэффициента умножения для изменения длительности 
импульса ШИМ. Используются методы натурных испытаний и структурного анализа. Приведены осцил-
лограммы работы модели и макетного образца преобразователя с внедренной адаптируемой системой 
управления при частоте ШИМ 2 кГц при изменении входного питающего напряжении. Математическое 
моделирование и экспериментальные исследования подтвердили работоспособность и эффективность 
применения разработанной системы управления. 
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Abstract. The study is aimed at developing an adaptive scalar control system for a frequency converter that 
controls asynchronous electric machines used in urban electric transport. The developed system includes clas-
sical scalar control in its structure, but allows maintaining optimal operating modes of the electric motor in a 
wide range of input supply voltage (250–800 V) by limiting the nominal rotation frequency and adding a multi-
plication factor to change the PWM pulse duration. The article uses methods of full-scale testing and structural 
analysis. Oscillograms of the model and prototype of the converter with an implemented adaptive control sys-
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tem at a PWM frequency of 2 kHz with a change in the input supply voltage are given. Mathematical modeling 
and experimental studies confirmed the operability and efficiency of the developed control system. 
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Введение. Сегодня наиболее востребованны-
ми средствами перемещения населения в боль-
ших городах являются наземный и подземный 
городской транспорт. Наибольший объем пасса-
жиропотока приходится на вагоны метро и трам-
ваев. Важно отметить, что в Санкт-Петербурге 
большинство станций метрополитена – закрытого 
типа и расположены на большой глубине, а сле-
довательно, на вагон с пассажирами не попадают 
прямые солнечные лучи, которые служат основ-
ными теплопритоками. Именно поэтому в ваго-
нах метрополитена Санкт-Петербурга не преду-
смотрены штатные системы охлаждения воздуха 
(кондиционеры). Трамвайное сообщение, особенно 
современные модели, напротив, имеет большую 
площадь остекления и большее влияние солнеч-
ных лучей на среднюю температуру в салоне. Та-
ким образом, оснащение трамваев системами 
охлаждения воздуха совершенно необходимо. 

Наиболее распространенные современные 
модели трамваев – 71-931М «Витязь-Ленин-
град»/«Витязь-М», 71-923М «Богатырь-М», 71-
934 «Лев» и другие, созданные на базе вышепе-
речисленных, производства ООО ПК «Транс-
портные системы». Данные модели оснащены 
системой кондиционирования и вентиляцией са-
лона, установленной на крыше вагона (рис. 1) [1]. 

 

Рис. 1. Транспортный кондиционер производства  
НПФ «ЭТНА» для трамваев «Витязь-М» производства  

ПК «Транспортные системы» 
Fig. 1. Transport air conditioner manufactured  

by NPF «ETNA» for trams «Vityaz-M» manufactured  
by PC «Transport Systems» 

Важно подчеркнуть, что силовое питание 
кондиционера рассчитано на переменное трех-
фазное напряжение с межфазным значением 
380 В и частотой 50 Гц, так как в состав оборудо-
вания моноблока (рис. 1) входят промышленные 
вентилятор(ы) и компрессор(ы). Трамвай получа-
ет питается от городской электросети постоянно-
го тока и для питания различных установок, в том 
числе кондиционера, в нем установлен преобра-
зователь «ИТ-БПТ» с синусоидальным выходным 
напряжением (статический преобразователь) [2], 
формирующий сеть переменного тока. 

Согласно ГОСТ 29322–2014 (IEC 60038:2009) 
[3] в системах постоянного тока, чем и является 
трамвайная сеть, номинальное значение напря-
жения составляет 600 В, а диапазон – 400…720 В. 
Для формирования переменного трехфазного 
напряжения с межфазным значением 380 В в 
звене постоянного тока преобразователя (напри-
мер, «ИТ-БПТ»), даже с учетом применения ме-
тода пространственной векторной модуляции 
(англ. Space Vector Pulse Width Modulation (SV-
PWM)), позволяющей увеличить выходное 
напряжение на 15 %, необходимо поддерживать 
значение напряжения порядка 650 В (с учетом 
падения на выходном LC-фильтре, который необ-
ходим для формирования переменного напряже-
ния). Следовательно, в «ИТ-БПТ» для обеспече-
ния работоспособности при низком значении 
входного напряжения (менее 650 В) применен 
каскад стабилизации напряжения звена постоян-
ного тока (ЗПТ) – повышающий (англ. boost 
converter) или повышающий/понижающий (англ. 
buck-boost converter) преобразователь. Таким об-
разом, «ИТ-БПТ» выполняет двойное преобразо-
вание напряжения для формирования стабилизи-
рованной сети. Кроме того, сеть постоянного то-
ка, к которой физически подключен токоприем-
ник трамвая, разделена на определенные про-
межутки, подключенные к разным подстанциям, 
соединенные через нейтральные вставки (участки 
контактной сети без электрического напряжения), 
где во время проезда (3…5 с) происходит отклю-
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чение преобразователя. Наличие значительного 
числа нейтральных вставок (более десяти на пяти-
километровом участке маршрута), применение 
двойного преобразования в «ИТ-БПТ», отсутствие 
функции автоподхвата частоты электродвигателя 
приводит к увеличению времени включения систе-
мы, а также снижению общего КПД и надежности.  

Авторы считают, что оптимальное решение, 
позволяющее избежать вышеописанных недо-
статков и снизить общую себестоимость, – это 
применение преобразователя частоты с выходным 
напряжением прямоугольной формы и с широт-
но-импульсной модуляцией (ШИМ) [4], подклю-
ченного непосредственно к контактной сети без 
каскада стабилизации ЗПТ и работающего в ши-
роком диапазоне входного напряжения с различ-
ными моделями электродвигателей (вентиляторов 
и компрессоров).  

С учетом описанного, цель исследования за-
ключается в разработке адаптируемой системы 
управления преобразователя частоты с ШИМ-вы-
ходом, работающим в диапазоне входных напря-
жений, превышающих установленные стандарты, 
для снижения количества отключений и сокраще-
ния времени запуска системы. 

Разработка системы управления. В системе 
микроклимата основные исполнительные элемен-
ты – вентилятор конденсатора, вентилятор испа-
рителя и компрессор (для одного гидравлического 
контура). На рис. 1 на верхней плоскости крышки 
видны три вентилятора конденсатора, подклю-
ченные параллельно; данное решение распро-
странено и на других видах установок средней 
мощности. Как упоминалось ранее, двигатели 
рассчитаны на промышленную сеть и питаются 
от одного источника питания, что свидетельству-
ет о типе электродвигателей – асинхронные. Дан-
ные уточнения необходимы для первоначального 
выбора типа управления электродвигателями: 
скалярное или векторное. Асинхронными элек-
тродвигателями можно управлять любым из них, 
но по эффективности и широкому диапазону пи-
тающего напряжения более предпочтительное и 
адаптируемое – векторное. Векторное управление 
подразумевает замкнутый контур регулирования, 
где вычисляется реальная скорость вращения и 
далее происходит регулирование по обратной 
связи. Однако данный тип управления имеет зна-
чительное ограничение в рамках поставленной 
задачи – управления несколькими электродвига-
телями. Параллельное управление невозможно в 
связи с формированием общего управляющего 

воздействия (преобразователь имеет один выход 
для подключения нагрузки). Кроме того, штатные 
электродвигатели не оборудованы датчиками по-
ложения какого-либо типа [5], и для вычисления 
скорости в системе управления необходимо при-
менять «наблюдатель», в котором указываются 
параметры двигателя. С учетом периодичности 
обслуживания и срока эксплуатации компонентов 
также возможна замена моделей электродвигате-
лей на ближайшие аналоги с отличающимися па-
раметрами. Таким образом, применение вектор-
ного бездатчикового управления практически те-
ряет свою эффективность в рамках рассмотрен-
ной задачи. Скалярное управление имеет ра-
зомкнутый контур, т. е. отсутствие обратной 
связи в системе управления, и построено на под-
держании соотношения U/f = const, где U – значе-
ние межфазного напряжения, f – формируемая 
частота. С учетом возможных отклонений напря-
жения контактной сети, а именно в диапазоне от 
359 до 813 В [3], применение стандартного ска-
лярного управления приведет к выходу из строя 
электродвигателя вследствие перегрева (при по-
вышенном напряжении) или к опрокидыванию 
(англ. pull-out или breakdown) (при пониженном 
напряжении) из-за невозможности поддержания 
требуемого момента. 

Авторы предполагают, что оптимальным ре-
шением построения адаптируемой системы 
управления преобразователя, работающей в ши-
роком диапазоне входных напряжений и при 
нагрузке различных типов (моделях электродви-
гателей), служат применение базовой структуры 
скалярного управления с добавлением коэффици-
ента, компенсирующего задание длительности 
ШИМ, непосредственно зависящего от номи-
нального значения напряжения ЗПТ и уставки, 
которая ограничивает формируемую частоту. Для 
реализации выдвинутой концепции можно взять 
за основу структуру ориентируемого по полю 
(англ. Field-Oriented Control FOC) управления 
асинхронным двигателем – управления моментом 
(SY-ось) и потокосцеплением (SX-ось) [6], [7]. 
Для применения данной структуры в адаптируе-
мой скалярной системе управления допустимо 
подавать на блок обратное преобразование Парка 
формируемые при скалярном управлении θ; SY, 
соответствующие соотношению U/f = const; SX = 0. 
Для поддержания номинального момента элек-
тродвигателя в широком диапазоне необходимо 
добавить ограничение максимальной частоты 
формируемого напряжения исходя из значения 
0.0925 · UЗПТ, означающего, что при напряжении  
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ЗПТ, равном 540 В, максимальная формируемая 
частота составит 50 Гц (в разрабатываемой системе 
применяется SV-PWM) [8]. Вторым регулируемым 
параметром, кроме частоты, служит амплитуда 
формируемого напряжения, которую также необхо-
димо изменять в зависимости от значения ЗПТ че-
рез коэффициент k (рис. 2). Разработанная система 

управления представлена на рис. 2, где U, U – 

двухфазные компоненты напряжения в неподвиж-
ной системе координат; Ua, Ub, Uc – управляющие 

сигналы длительности ШИМ модуляции (пофаз-
ное задание); ia, ib, ic – значение фазных токов 

(токов фаз подключенного электродвигателя). 

 
 

Рис. 2. Структурная схема разработанной СУ  
Fig. 2. Structural diagram of the developed control system 
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Рис. 3. Осциллограммы работы модели инвертора с применением разработанной СУ 
Fig. 3. Oscillograms of the inverter model operation using the developed control system 
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Таким образом, разработанная система управ-
ления позволит поддерживать номинальный момент 
электродвигателя при изменении напряжения пита-
ния (ЗПТ). Например, если напряжение меньше 
номинального, будет выполнено ограничение фор-
мируемой частоты до максимально возможной и 
добавлен коэффициент умножения амплитуды >1. 
При повышенном напряжении, наоборот, формиру-
емая частота будет соответствовать заданной, а ко-
эффициент умножения, влияющий на формируе-
мую амплитуду напряжения, будет <1.  

На рис. 3 представлены осциллограммы рабо-
ты модели преобразователя с внедренной струк-
турой системы управления, где выполняются из-
мерения напряжения ЗПТ (диапазон 300…800 В) 
(рис. 3, а), задания (кривая 1) и реального значе-
ния (кривая 2) формируемой частоты (рис. 3, б), 
задания (кривая 1) и реального значения (кри-
вая 2) формируемой амплитуды (рис. 3, в) и зада-
ния ШИМ (задания длительности открытия тран-
зисторов) (рис. 3, г). Для наглядности функцио-
нирования системы, а именно, снижения форми-
руемой частоты от изменений напряжения ЗПТ, 

соотношение U/f = const, применяемое при ска-
лярном управлении, изменено до соотношения  
U/0.1f = const. 

Согласно полученным осциллограммам, раз-
работанная система управления поддерживает 
соотношения зависимости формируемой частоты 
и напряжения при изменении напряжения ЗПТ в 
заданном диапазоне. 

Практические испытания. На рис. 4 приве-
дены осциллограммы (снимок экрана) работы 
преобразователя с внедренной СУ, измеренные 
цифровым осциллографом Micsig STO2202C [9] с 
полосой пропускания 200 МГц, где а – выходной 
ток фазы преобразователя; б – напряжение на фа-
зе преобразователя относительно минуса ЗПТ; в – 
напряжение ЗПТ. На обеих осциллограммах 
среднеквадратичное значение тока составляет 
порядка 2 А, формируемая частота – около 10 Гц, 
но главное отличие заключается в значениях 
напряжения ЗПТ: на левой осциллограмме оно 
составляет 176 В, на правой – 120.7 В. При про-
ведении эксперимента задание частоты вращения 
электродвигателя составляло 10 Гц. 

 

 

Рис. 4. Осциллограммы работы преобразователя с применением разработанной СУ 
Fig. 4. Oscillograms of the converter operation using the developed control system 
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Рис. 5. Осциллограммы работы преобразователя с применением разработанной СУ 
Fig. 5. Oscillograms of the converter operation using the developed control system 
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Результатом проведенных измерений, под-
тверждающих работоспособность разработанной 
структуры системы управления, служит практи-
чески идентичный ток выходной фазы, что при 
равных условиях измерения (момента нагрузки) 
подтверждает идентичные условия эксплуатации 
электродвигателя при заданной частоте. Для бо-
лее детального анализа на рис. 5 приведены ос-
циллограммы аналогичные рис. 4, но отличаю-
щиеся по временной развертке осциллографа 
(500 мкс) для наглядности изменения длительно-
сти импульса ШИМ выходной фазы [10]. 

Основным результатам натурных испытаний 
стало поддержание заданной частоты, а именно 
10 Гц, при изменении напряжения ЗПТ (178… 
120 В).  

Выводы. Разработанная система управления, 
построенная на базе векторного управления, поз-
воляет поддерживать номинальный момент асин-

хронного электродвигателя без обратной связи 
при значительном отклонении значения питаю-
щего напряжения посредством внесения измене-
ний в задание частоты вращения и формирования 
напряжения. Безусловно, реальная скорость вра-
щения электродвигателей будет отличаться на 
значение величины скольжения, что некритично в 
рамках рассмотренной системы. Подключение 
преобразователя непосредственно к контактной 
сети (отсутствие каскада стабилизации) и отсут-
ствие синус-фильтра на выходе значительно сни-
зит себестоимость и время запуска системы после 
проезда нейтральной ставки трамваем. 

Дальнейшее развитие исследований направ-
лено на более детальную проработку системы 
управления, где одна из важнейших функций, 
которые необходимо реализовать, – автоподхват 
частоты [11]–[13]. 
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