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Аннотация. В электромеханических системах часто встречаются переменные, имеющие общие измери-
тельные или управляющие каналы. Этими переменными приходится управлять и изменять их одновре-
менно, а также плавно переключать. Таковы, например, пары переменных: момент и положение, положе-
ние и скорость, ток и напряжение и т. д. Эти переменные называются сопряженными. В статье рассматри-
ваются вопросы построения математических моделей для идентификации и управления электромехани-
ческими и электронными объектами, содержащими сопряженные переменные. Для построения 
указанных моделей используются методы и элементы теории операторов в функциональных простран-
ствах. Рассмотрен редуцированный подход к построению моделей, допускающий простую аналитику. 
Представлен пример расчета в рамках редуцированной модели. Проанализированные результаты ис-
следования вытекают из концепций обменной механики, рассмотренных в предыдущих работах автора. 
Полученные результаты могут быть использованы для построения систем идентификации и управления 
электромеханическими объектами. 
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Abstract. Electromechanical systems often contain variables that share common measurement or control 
channels. These variables must be controlled and changed simultaneously, as well as smoothly switched. Ex-
amples of such pairs of variables include torque and position, position and speed, current and voltage, etc. 
These variables are called conjugate. This article examines the construction of mathematical models for the 
identification and control of electromechanical and electronic objects containing conjugate variables. These 
models are constructed using methods and elements of operator theory in functional spaces. A reduced ap-
proach to model construction, allowing simple analytics, is considered. An example of a calculation within the 
framework of the reduced model is presented. The analyzed research results follow from the concepts of ex-
change mechanics discussed in the author's previous works. The results obtained in the article can be used to 
construct systems for the identification and control of electromechanical objects. 
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Введение. Идея сопряженности переменных 
в математических моделях физических процессов 
широко используется в физико-математической 
литературе. 

Математически свойство сопряженности пере-
менных может быть выявлено из особенностей не-
которых интегральных преобразований, например 
Фурье или Лапласа. В этих преобразованиях произ-
ведение дисперсий функции в разных представле-
ниях остается постоянным. 

В физике свойство переменных быть в со-
пряжении рассматривается как природное явле-
ние, например: 

– в классической механике (в механике Га-
мильтона и, особенно, в принципе максимума) 
понятие «сопряженные переменные» проистекает 
из концепции дуализма и является более общим, 
чем понятие «переменные состояния»; 

– в квантовой и статистической механиках 
сопряженность указывает на определенные фун-
даментальные явления, происходящие в моделях 
и связанные с процессом измерения [1]–[2]. 

В технической кибернетике идея сопряжен-
ности ассоциируется с каналом связи, имеющим 
ограничения на пропускную способность, когда 
один канал разделяют несколько сигналов. 

Из приведенных примеров видно: сопряжен-
ность – особая связь переменных, отличающаяся 
от функциональной связи степеней свободы, воз-
можной в многомерных моделях объектов клас-
сической электромеханики. 

Значение сопряженности переменных при 
решении инженерных задач идентификации и 
управления электромеханическими объектами 
(ЭМО) трудно переоценить.  

К таким задачам следует отнести одновре-
менное управление: 

– по вектору силы и положения в технологиях 
робототехники;  

– скоростью и положением в электроприводах 
различных промышленных механизмов;  

– током и напряжением в электронных сило-
вых преобразователях электроприводов, и т. д. 

Указание на одновременность в приведенных 
примерах принципиально, так как раздельное во 

времени управление каждой из сопряженных пе-
ременных исключает рассматриваемое здесь яв-
ление. Однако и при раздельном управлении пе-
ременными, находящимися в сопряжении, часто 
требуется плавное (квазистатическое) переклю-
чение управления с одной переменной на другую, 
что может сделать полезными предлагаемые 
здесь модели. 

Применительно к обменной механике (ОМ) 
[3]–[4] явление сопряженности переменных обу-
словлено свойствами измерительно-управляющего 
прибора (ИУП). При одновременном управлении 
несколькими сопряженными переменными ИУП 
может иметь для них общий измерительный или 
общий управляющий канал. Общими также могут 
быть оба канала.  

Если для каждой из двух или трех переменных 
имеются отдельные измерительный и управляющий 
каналы, то эти переменные не сопряжены и следует 
считать, что для каждой переменной в системе 
«прибор–объект» (СПО) имеется свой ИУП. 

Как отмечено в [3], фундаментальными свой-
ствами ИУП служат ограничения, которые выра-
жаются, например, в не равном нулю кванте дей-
ствия. При этом управляемая или идентифициру-
емая переменная в СПО будет иметь статистиче-
ский разброс, мерой которого может служить 
дисперсия. 

Кроме собственной дисперсии исследуемых 
переменных в СПО, в случае их сопряжения по-
является дисперсия связи, отражающая ограни-
чения совместно используемых этими перемен-
ными каналов в ИУП. 

Математическим средством для моделирования 
статистических процессов, протекающих в СПО с 
учетом импульсно-энергетического (ИЭ) обмена, 
служат операторы в гильбертовом пространстве. 
Условие сопряженности переменных в СПО фор-
мально представляется операцией коммутирования 
соответствующих этим переменным операторов. 

Пусть Â  и B̂  – операторы первой и второй 
сопряженных переменных соответственно; Ĉ  – 
коммутатор. Тогда  

  ˆ ˆ ˆ ˆˆ ˆ ˆ 0,C AB BA AB     (1) 

где […] – скобки Пуассона. 
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Условие (1) означает, что СПО не может быть 
управляема или измерима одновременно по двум 
переменным A и B с такой же предельной для 
ИУП точностью, с какой эта система может быть 
управляема или измерима по каждой переменной 
в отдельности. В частности, если коммутатор Ĉ  
постоянен, точности при одновременном измере-
нии либо управления сопряженными переменны-
ми могут находиться в обратной зависимости. 

И обратно, из равенства коммутатора (1) нулю 
следует, что переменные A и B одновременно из-
меримы и управляемы с предельной для ИУП 
точностью, т. е. не сопряжены. В этом случае ис-
ходный ИУП можно функционально разделить на 
две независимых и равноценных в известном 
смысле части. 

Для выявления факта сопряженности двух и 
более переменных в СПО требуется решать об-
ратную задачу ОМ (выполнить идентификацию) 
[3]. Но иногда сопряженность переменных видна 
из самой постановки задачи. 

В известных ранее постановках задач управ-
ления и идентификации принималось, что вза-
имозависимость переменных в объекте связана с 
его свойствами, которые детерминированы в 
классическом понимании. В ОМ эта взаимосвязь 
может быть перенесена на операторы, происхож-
дение которых связано с ИУП. Действительно, 
всегда можно себе представить, что ИУП под-
ключен к любой из переменных объекта, при 
этом у операторов этих переменных будут разные 
спектральные свойства. Эти свойства дадут о се-
бе знать при возникновении условий сопряжения. 

После того как модель сопряжения перемен-
ных в процессе идентификации установлена, ее 
следует использовать при решении прямой задачи 
ОМ (управления СПО) [3]. 

Далее рассмотрены вопросы описания и при-
менения аппарата сопряженных переменных для 
решения задач идентификации и управления 
электромеханическими объектами. 

Постановка задачи. На основе подходов, из-
ложенных в [3]–[4], требуется:  

– построить элементы математической моде-
ли СПО, включающие сопряженные переменные, 
для решения обратной ОМ (идентификации) и 
прямой ОМ (управления) задачи; 

– рассмотреть редуцированную модель управ-
ления сопряженными переменными в рамках од-
номерного одноканального варианта; 

– полученные результаты применить к расче-
ту примера решения прямой задачи ОМ – системе 
управления электромеханическим объектом. 

Построение элементов математической мо-
дели системы «прибор–объект», включающей 
в себя сопряженные переменные. Прямая 
(ПЗОМ) и обратная (ОЗОМ) задачи обменной 
механики формулируются в разных представле-
ниях. Прямая задача (задача управления СПО) 
формулируется в координатно-временном (КВ) 
представлении при обеспечении максимально 
возможной точности для ИУП в этом представле-
нии. Обратная задача (задача идентификации или 
измерения СПО) формулируется в ИЭ-представ-
лении. В этом представлении также должна быть 
обеспечена предельно возможная для ИУП точ-
ность измерения СПО. 

Математические модели процессов, обуслов-
ленных решением ПЗОМ и ОЗОМ, рассматрива-
ются здесь с привлечением идей, относящихся к 
линейным функциональным пространствам, в 
частности, к гильбертовым пространствам [5]. 
Смена представления в таком пространстве будет 
означать смену «системы координат». В этом 
случае переменные, образующие одноименные 
координаты, при смене представления переходят 
в операторы. Оператором, таким образом, можно 
назвать обобщение понятия матрицы преобразо-
вания координат в обычном, геометрическом про-
странстве. Действие оператора на функцию (век-
тор) переводит ее в другую функцию (вектор) в 
том же функциональном пространстве. 

Импульс и энергия в ИЭ-представлении – это 
просто числа (собственные значения операторов 
импульса и энергии), в КВ-представлении – опера-
торы. 

Аналогичная ситуация наблюдается и с пере-
менными координаты и времени: в ИЭ-представле-
нии это будут операторы координаты и времени. 

Для указанных двух представлений имеем, 
таким образом, четыре фундаментальных опера-
торных аргумента координаты, времени, энергии 
и импульса. 

От этих операторов, как от аргументов, могут 
быть образованы функции. В частности, функция 
Грина СПО представляет собой такую функцию, 
обусловленную воздействием двумерной функ-
ции Дирака на эту систему. 

Для получения форм указанных четырех опе-
раторов удобно отталкиваться от действия S ма-
териальной точки как функции координат x и 
времени t: S = S (x, t). В окрестности точки с ко-
ординатами x, t в однородном пространстве и 
времени (одномерное движение) имеем dS = 
= p dx – E dt, где p – сохраняющийся импульс; E – 
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сохраняющаяся энергия. Если пространство и 
время неоднородны, то имеем дополнительно в 
этой окрестности приращение для действия 
δS = xδp – tδE, и тогда в этой окрестности 

;S S
p p
 


 

 = .S S
E E
 
 

 Таким образом, поведение S

для материальной точки определяется четырьмя 

производными: ,  ,  ,  .   
   
S S S S
x t p E

 

Рассмотрим модель СПО [3], где кроме указан-
ных ранее неоднородностей может присутствовать 
ИЭ-обмен и не равный нулю квант действия. В этом 
случае указанные производные от функции дей-
ствия следует трансформировать в операторы. 

Согласно [3], при решении ОЗОМ функция 
Грина СПО переводится из КВ-представления в 
ИЭ-представление разложением ее по собствен-
ным функциям φs оператора действия вида 

;zS Is Ae   ( , )e zS IA x t , где A – медленно 
меняющаяся по сравнению с фазой Sz/I нормиро-
вочная амплитуда; I – квант действия; Sz – ком-
плексное действие для свободной материальной 
точки с сохраняющимися значениями pz, Ez: 

, z z z z zS p x E t  где pz, xz, Ez, tz – комплексные 
импульс, координата, энергия и время соответ-
ственно. Индекс z указывает здесь и далее на 
комплексную плоскость. При этом индекс z1 со-
провождает действительную часть комплексного 
числа или переменной, индекс z2 – мнимую часть 
комплексного числа или переменной. 

Указанное разложение по собственным функ-
циям без особых натяжек может быть представле-
но как прямое двумерное преобразование Лапласа. 
Комплексность элементарных аргументов в соб-
ственных функциях – импульса, координаты, энер-
гии и времени – связана с необходимостью учета 
импульсно-энергетического обмена в ОМ. 

Вопрос существования комплексного дей-
ствия – вне показателя экспоненты, но как само-
стоятельной модели – в этой статье не обсуждает-
ся. Гипотезой в этой работе служит оператор дей-
ствия, имеющий такой же вид, как комплексное 
действие в показателе приведенных ранее его 
собственных функций:  

 ˆ ˆ ˆˆ ˆ .z z z z zS p x E t   (2) 

Оператор действия может быть построен на 
основе уравнения, называемого задачей на поиск 
собственных значений и собственных векторов: 

ˆ ,z s z sS S    где Sz – собственные значения опе-
ратора действия (2). Однако, учитывая структуру 
(2), можно определить каждый из элементарных 
операторов ˆ ˆˆ ˆ,  ,  ,  .z z z zp x E t  Эти операторы в ряде 
случаев могут иметь комплексные собственные 
значения. Если операторы ˆ ˆˆ ˆ,  ,  ,  z z z zp x E t  – само-

сопряженные, то ˆzS  также будет самосопряжен. 
В рассматриваемом подходе важны два пред-

ставления ˆ :zS  КВ- и ИЭ-представление. В КВ-
представлении (2) будет иметь вид 

 ˆ ˆˆ .z z z z zS x p t E   (3) 

Из (3) видно, что в КВ-представлении опера-
торы координаты и времени переходят в числа – 
сомножители для операторов импульса и энергии 
соответственно. 

С учетом того, что ,s p E     можно найти 

операторы импульса и энергии ˆˆ ,  z zp E  из уравне-
ний 

 ˆˆ ;  ,z p z p z E z Ep p E E       (4) 

где e ,z zp x Ip pА   e z zE t IE EА    – соб-

ственные функции операторов импульса и энергии 
соответственно; 

1 2
,z z zp p jp   

1 2z z zE E jE   – 

в (4) и далее обозначены как собственные значе-
ния операторов импульса и энергии соответ-
ственно; pz1

, Ez1
 – диссипативные или контрдис-

сипативные импульс и энергия соответственно 
[3]; pz2

, Ez2
 – консервативные импульс и энергия; 

0( ),p pA x   0( )E EA t   – почти постоянные 

нормировочные амплитуды; x0, t0 – начальные ко-

ордината и время в уравнениях (4); 1.j    
Собственные функции удовлетворяют урав-

нениям (4) в том случае, если операторы импуль-
са и энергии имеют вид 

 
1

1

ˆ ;

ˆ .

z z
z

z z
z

p j p I
x

E j E I
t

 
   

 
    

 (5) 

Используем аналогичную методику для по-
строения операторов ˆˆ  и ,z zx t  входящих в опера-

тор действия ˆzS  в ИЭ-представлении: 
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 ˆ ˆˆ .z z z z zS p x E t   (6) 

Операторы координаты и времени ˆˆ ,  z zx t  в (6) 
найдутся из уравнений 

 ˆˆ ;   .z x z x z t z tx x t t       (7) 

Будем иметь e ;z zx p Ix xА   t tА    

e z zt E I  – собственные функции операторов 
координаты и времени соответственно; 

1 2
;z z zx x jx   

1 2
;z z zt t jt   xz1

, tz1
 – линейно 

изменяющиеся координата и анизоэнтропийное 
время соответственно, обусловленные изменени-
ем энтропии в СПО вследствие обмена; xz2

, tz2
 – 

квазициклическая координата и время, обуслов-
ленное изоэнтропийными (адиабатическими) 
процессами, протекающими в СПО, т. е. обрати-
мое механистическое время. 

Выведенные из (7) операторы координаты и 
времени имеют вид 

 
1

1

ˆ ;

ˆ .

z z
z

z z
z

x j x I
p

t j t I
E

 
   

 
    

 (8) 

Каждый из четырех элементарных операторов 
(5), (8) получен на основе обобщения четырех 
производных действия с учетом ИЭ-обмена и 
ограничений ИУП. Как видно из (5), (8), операто-
ры состоят из неконсервативной (первое слагае-
мое в скобках) и консервативной частей. Приме-
нительно к ЭМО эти слагаемые, с небольшой 
натяжкой, можно было бы назвать активной и 
реактивной составляющими оператора. 

Идея использования линейных и циклических 
координат в механике не нова [6], [7]. Однако в 
этой статье выполнено их агрегирование в ком-
плексные переменные (включая время), располо-
женные в показателе степени функции обмена, 
функции Грина и собственных функций элемен-
тарных операторов.  

В функциях обмена и Грина присутствуют и 
обменная, и статистическая составляющие, кото-
рые феноменологически не разделить. Такая мо-
дель позволяет рассмотреть и описать в том числе 
и немеханические процессы, протекающие в 
СПО, при решении ПЗОМ и ОЗОМ.  

В этой статье обсуждается решение указан-
ных задач для ЭМО, природа которых допускает 
упрощенное представление ряда элементарных 
операторов и их собственных функций. В частно-

сти, при решении ОЗОМ может присутствовать 
только изоэнтропийная составляющая времени tz2

 

и квазициклическая составляющая координаты 
xz2

, которые в [8] обозначены как t и x. Последнее 

связано с тем, что импульсно-энергетический об-
мен учитывается в алгоритме решения этой зада-
чи. Аналогично, при решении ПЗОМ функция 
Грина в координатно-временном представлении 
будет иметь аргументы xz2

 и tz2
. 

Таким образом, при решении задач ОМ для 
СПО ЭМО элементарные операторы координаты 

и времени могут иметь вид 
2

ˆ ;


 z
x jI

p
 t̂   

2

,
z

jI
E


 


 а операторы импульса и энергии 

будут представлены как 
1

2

ˆ ;
   
  

z z
z

p j p I
x

 

1
2

ˆ .
    
  

z z
z

E j E I
t

 Аргументы с индексом z2 

действительны, поэтому, опуская индексы, получим 

 
1

1

ˆˆ ; ;

;

ˆ .

  

ˆ z z

z z

x jI t jI
p E

p j p I
x

E j E I
t

 
  

 

    
     

 (9) 

Однако если функция Грина («передаточная» 
функция) W(x, E) [3] абсолютно интегрируема по 
x, то для вычисления функции Грина G(p, E) 
можно воспользоваться разложением по соб-
ственным функциям оператора импульса: 

 ˆ .p jI
x


 


 (10) 

Элементарные операторы (10) – самосопряжен-
ные, т. е. имеют действительные собственные зна-
чения. Для самосопряженных операторов их транс-
понирование соответствует их комплексному со-

пряжению. Пусть Â  – линейный оператор, Â  – 

оператор, транспонированный к ˆ,A  *Â – оператор, 

комплексно сопряженный к ˆ.A  Тогда оператор Â  
будет самосопряженным (эрмитовым), если 

 *ˆ ˆ .A A  (11) 
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Операция транспонирования состоит в сле-
дующем. Пусть φ(x) и ϑ(x) – функции обмена, 
обладающие свойством абсолютной интегрируе-
мости. Тогда  

    ˆ ˆ .A dx A dx     
  (12) 

 
С учетом того, что вместо ϑ(x) можно выбрать 

φ*(x), имеем, согласно [3],  * Â dx    

 * *ˆ .A dx    Тогда на основании (12) можно 

получить (11).  
Покажем, что хотя бы один из четырех эле-

ментарных операторов, например оператор им-
пульса, самосопряженный. Тогда, учитывая их 
одинаковую структуру, остальные операторы 
также самосопряжены. Для функций φ(x), ϑ(x) и 
оператора ˆ zp  из (9) получим 

 
1

ˆ( ) .z zp dx j p dx jI dx
x


       
    (13) 

Интегрируя второе слагаемое в правой части 

(13) по частям, будем иметь jI dx
x


   
  

.jI dx
x


  
  Так как в первом слагаемом (13) 

pz1
 – просто функция, то получим окончательно  

   *ˆ ˆ ,z zp dx p dx       

а это и есть условие самосопряженности опера-
тора импульса. 

Рассматривая проблему точности одновре-
менного измерения и управления переменными p, 
E, x, t в рамках данного подхода, из собственных 
функций элементарных операторов можно ви-
деть, что эти переменные сгруппированы в пары 
p, x и E, t. Например, при решении ОЗОМ [8] 
произведение погрешностей π∆x∆p образует 
площадь виртуального эллипса (с точностью до 
отношения «сигнал-шум»). Вследствие адиабати-
ческой инвариантности действия и импульсно-
энергетического обмена площадь эллипса, обра-
зованного квантом действия I, сохраняется, но 
при этом, соответственно, взаимно изменяются 
длины его главных осей ∆x и ∆p. 

Покажем, как предлагаемый здесь аппарат 
функционального анализа позволяет получить 
указанный результат попарного сопряжения пе-
ременных. 

Пусть СПО находится в области ∆x и при 
этом среднее значение импульса – pz0

. Функция 
обмена φ при этом будет ненулевой в указанной 

области благодаря амплитуде A и диссипацион-
ной части, определяющей обмен: 

 0 /( ) ( ) e .zp x Ix A x   (14) 

Разложим (14) по собственным функциям 
оператора импульса (в интеграл Лапласа): 

( ) ( ) ( )z pf p x x dx     

 0( ) /( )e ,z zp p x IA x dx 
   (15) 

где f (pz) – функция обмена в импульсном пред-

ставлении; *p  – функция, комплексно сопря-

женная φp. Чтобы интеграл (15) был заметно от-
личен от нуля, период колебательной части 

0( )e z zp p x I   должен быть сравним с областью 
∆x, в которой амплитуда A не равна нулю, или 
больше нее. На основании этого для модулей по-

казателя степени будем иметь 0 1.zp p x
I

 
  

С учетом того, что 0 zp p  – суть интервал зна-
чений, в который могут попасть реальные значе-
ния импульсов при решении прямой и обратной 
задач при обмене и статистическом разбросе, 
определяемом 2( ) ,zf p  последнее выражение 
можно записать так: 

 .zp x I    (16) 

В случае, если СПО почти консервативная, 
так, что активная составляющая в обмене отсут-
ствует, то соблюдается условие абсолютной инте-
грируемости, и будем иметь 

 .p x I    (17) 

Таким же образом можно получить условия 
сопряженности переменных энергии и времени, 
аналогичные (16), (17): 

   ; .zE t I E t I       (18) 

В случае операторов более сложного вида (со-
ставных, или функций от элементарных операторов, 
например функцию Грина можно также рассматри-
вать как оператор) следует понять природу выраже-
ния (1), проистекающую из (16)–(18).  

В случае идеального ИУП при отсутствии ИЭ-
обмена операторы вырождаются в числа или функ-

ции a и b, так, что    ˆ ˆ ˆˆ ˆ ˆ 0.AB BA AB ab      
В следующем приближении c близким к иде-

альному ИУП, но при наличии ИЭ-обмена, акту-
альном для высокоточных ЭМО, можно положить 
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  ˆ ˆ ,AB jIc  (19) 

где с – число или функция, в которую вырождает-
ся оператор Ĉ в (1), так, что такой результат по-
хож на вычисление скобки Пуассона в гамильто-
новой механике; j – мнимая единица, поддержи-
вающая свойство эрмитовости оператора  ˆ ˆ .AB  В 

форме (19) коммутатор  ˆ ˆAB  соответствует усло-
виям сопряженности (18) (пропорционален им), 
так что можно записать: 
 .A B Ic    (20) 

В следующем приближении, с неидеальным 
ИУП, при наличии низкоинтенсивного ИЭ-обмена, 
когда квант действия сравним с масштабом досто-
верных результатов, (1) будет иметь вид 

  ˆ ˆˆ ,AB jIC  (21) 

где Ĉ  – коммутатор (1), который следует опреде-
лить экспериментально либо рассчитать. 

Обсуждение одномерного одноканального ва-
рианта управления сопряженными переменны-
ми в рамках редуцированной модели. Схема 
наиболее общего вида, иллюстрирующая ПЗОМ и 
отвечающая (1), (19)–(21), представлена на рис. 1. 

 

Рис. 1. Схема общего вида решения прямой задачи 
обменной механики для двух сопряженных 

переменных 
Fig. 1. A general scheme for solving the direct problem 

of exchange mechanics for two conjugated variables 

СПО RA 

RB 

Â  a 

b B̂

–

–

 
На рисунке обозначены: СПО – система 

«прибор–объект», на выходе которой наблюдают-
ся два сопряженных оператора ˆ ˆ и ,A B  так как 
СПО имеет фрагмент общего канала для указан-
ных операторов; RA и RB – регуляторы соответ-

ствующих сопряженных каналов, обеспечиваю-
щих стабилизацию собственных значений опера-
торов ˆ ˆ и A B  в соответствии с заданным критери-
ем качества – фильтром нижних частот (ФНЧ), 
околоидеальных форм сигналов a и b. 

На основании гипотезы, указанной во введе-
нии, о том, что сопряжение операторов в СПО 
может быть перенесено на ИУП, в нем находится 
фрагмент общего канала операторов. Таким обра-
зом, сопряжение операторов требует согласован-
ного изменения пропускной способности опти-
мальных фильтров или их среднеквадратичного 
отклонения (или дисперсии) в соответствии с 
правилами (1), (19)–(21). 

Рассмотрим редуцированную модель [4] об-
менных процессов при решении ПЗОМ. В част-
ности, для этой модели вводится оператор часто-
ты, имеющий вид 

 
10

ˆ
ˆ lim ,z

z z
I z

E j
I t

 
       

 (22) 

где 1
1 0

lim .z
z

I

E

I
   Собственная функция опера-

тора ˆ z  в (22) будет e ,ztА     где 

1 2
;z z zj      ωz2

 – собственные значения 

оператора частоты. В одномерном случае в 
окрестности x0 для ЭМО будем иметь ˆ ˆz s   и 

ˆ .ds j
dt

     
 

 В энергетическом представлении 

(в окрестности точки x0) оператор ŝ  становится 
переменной ,s j     где σ – диссипативная 
часть комплексной частоты, ω – ее консерватив-
ная часть. Функции от s называют передаточными 
функциями (ПФ). 

Пусть ПФ какого-либо фильтра нижних ча-
стот есть W (s). Модули ПФ идеальных ФНЧ пе-
ременных A и B в случае их сопряженности 

( )CAW s  и ( ) ,CBW s  сохраняются, а меняются их 
низкочастотные «полосы пропускания», называе-
мые здесь среднеквадратичными отклонениями, 

Рис. 2. Амплитудно-частотные характеристики идеальных фильтров нижних частот 
для одноканальной системы управления двумя сопряженными переменными: а – А; б – В 

Fig. 2. The amplitude-frequency characteristics of ideal low-pass filters for a one-channel control  
system of two conjugated variables: а – А; б – В 

–DA    –DCA              0                 DCA      DA    s 

а                  б  
–DB           –DCB       0        DCB               DB    s 

CAW CBW  
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квадраты которых есть дисперсии (рис. 2). Для 
краткости далее употребляется термин «диспер-
сия», качественно идентичный термину «средне-
квадратичное отклонение». 

На рис. 2 абсциссы заштрихованных областей 
показывают изменение дисперсий DA–DCA 
(рис. 2, а) и DB–DCB (рис. 2, б) переменных A и B 
соответственно. Дисперсии DA и DB отражают 
«полосы» переменных с независимыми каналами, 
DCA и DCB – «полосы» этих же переменных, раз-
деляющих общую часть канала. 

Для реальных ФНЧ закон сохранения ампли-
туды ПФ при изменении дисперсий сопряженных 
переменных будет почти таким же, как на рис. 2. 
В частности, для максимально-плоской функ-
ции – фильтра Баттерворта 2-го порядка H2(s), 
имеющего вид 

 0
2

2
( ) ,

( )
G

H s
B s

  (23) 

где G0 – коэффициент передачи на нулевой часто-

те; 22 ( ) 2 1.B s s s    Связав G0 с частой среза 
ωc, получим из (23) 

 
2

2 2 2( ) .
2

c

c c
H s

s s




   
 (24) 

Так как оригинал (24) обладает свойством абсо-
лютной интегрируемости, заменим s j     на 

.s j   Взяв далее от (24) модуль, получим 

 
2

2 4 4
( ) .c

c

H j


 
  

 (25) 

Графики (25) при управлении дисперсиями 
сопряженных переменных для ωc = 20 с–1 (кривая 
1) и ωc = 5 с–1 (кривая 2) представлены на рис. 3. 
 
 

 
 

Рис. 3. Управление дисперсиями сопряженных 
переменных 

Fig. 3. Control of dispersions of conjugated variables 
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Частоты среза ФНЧ, называемые здесь дис-
персией, соответствуют уменьшению амплитуды 
на 3 дБ на декаду, т. е. примерно в 0.708 раз (на 
рис. 3 представлены проекциями на ось абсцисс, 
штрих-пунктир для кривой 1 и длинный штрих 
для кривой 2). 

В русле редуцированной модели целесооб-
разно обсудить и рассчитать закон управления 
дисперсиями и границы такого управления. Для 
определения границ в расчетную схему следует 
ввести идентичные несопряженные каналы (пе-
ременные – степени свободы).  

Вследствие того, что идеальные ФНЧ (рис. 2) не 
удовлетворяют критериям реализуемости и грубо-
сти, в отличие от (24), (25) и рис. 3, расчеты следует 
вести не на основе дисперсий, а в терминах ПФ. 

СПО2 

 

Рис. 4. Расчетная схема несопряженных каналов 
Fig. 4. Calculation scheme of non-conjugated channels 

СПО1 

WPA 

WPB 

A a 

b B 

WRA 

WRB 

WOA 

WOB 

 
Расчетная схема несопряженных каналов 

представлена на рис. 4. 
На рисунке, вследствие того, что квант дей-

ствия I → 0, внутри СПО1 и СПО2 каналов A и В 
выполнено разделение на ПФ приборов WPA, 
WPB и ПФ объектов WOA, WOB; WRA, WRB – ПФ 
регуляторов каналов A и B. Пусть ПФ регулято-
ров каналов таковы, что ПФ каналов A и B, WA и 
WB имеют вид, следующий из (24), для «разо-

мкнутых» систем, 
 

2
,

2



c

cs s
 и 

 
;
.

A RA PA OA

B RB PB OB

W W W W
W W W W


 

 (26) 

Так как каналы управления независимы, их 
дисперсии (частоты среза) ωc можно менять по 
любому закону в пределах  0, mA  и  0, mB
соответственно (ωm – предельно допустимая дис-
персия каналов A или B). Здесь обсуждаем только 
первый квадрант по рис. 3, полагая, что во втором 
квадранте все происходит качественно так же. 
Так что ПФ каналов с управляемой дисперсией 
WCA и WCB можно представить в виде 
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 

 

1 ;
2
1 ,
2

CA A A

CB B B

W W W

W W W

   

   


 (27) 

где ∆WA, ∆WB – управляемое изменение ПФ ФНЧ 
вида (24), но для «разомкнутых» независимых 
каналов A и B вследствие изменения их диспер-
сий ωmA и ωmB. 

Для сопряженных каналов, в условиях ука-
занного разделения, разные схемы сопряжения 
приводят к одному расчетному результату. Здесь 
предполагается, что наиболее общий вариант со-
пряжения представлен на рис. 5. 

СПО 
 

Рис. 5. Расчетная схема сопряженных каналов 
Fig. 5. Calculation scheme of conjugated channels 

WPA 

WPB 

A a 

b 

WOA WRA 

WOB WRB 
B + 

 
ПФ сопряженных каналов A и B на основании 

рис. 5 имеют вид 

 
 
 

;

.
CA RA PA RB PB OA

CB RA PA RB PB OB

W W W W W W

W W W W W W

  


 
 (28) 

Из (28) следует, что переменными A, B можно 
управлять только от одного из регуляторов RA 
или RB. Действительно, выполнив деление второ-
го уравнения (28) на первое, получим пропорцию 

OB
CB CA

OA

W
W W

W
  и, если OB

OA

W
W

 не является коэф-

фициентом пропорциональности, переменными 
можно управлять от регуляторов RA либо RB с 
разным качеством. Однако здесь интересно раз-
дельное управление переменными A и B с той 
степенью независимости, которую допускает их 
сопряжение. 

Для решения этой задачи в независимых ка-
налах следует выделить аддитивные части ∆W, 
как в (27), возникающие в результате сопряжения 
переменных. Для этого следует выразить WPA и 
WPB из (26), подставив затем эти выражения в 
(28). Сохраняя в выражениях WA и WB, получим 

 
;

.

OA
CA A B

OB

OB
CB B A

OA

W
W W W

W
W

W W W
W

  


  


 (29) 

Обозначая аддитивные слагаемые в правых 

частях (29) ,OA
A B

OB

W
W W

W
   ,OB

B A
OA

W
W W

W
   

следует отметить, что система (29) будет не-
устойчива, так как дисперсии этих ФНЧ будут 
больше, чем ωmA и ωmB, поэтому следует вос-
пользоваться выражением (27), но с учетом свой-
ства сопряженности. Будем иметь 

 
 

 

1 ;
2
1 .
2

CA A A

CB B B

W W W

W W W

   

  



 (30) 

Отличие (30) от (27) заключается как в ка-
нальных связях внутри ∆WA, ∆WB, так и в проти-
воположных знаках аддитивных слагаемых пра-
вых частей, причем из (29), (30) следует 

,A B B AW W W W    что представляет собой ре-
дукцию из (20), так как ПФ WB, WA в своих дис-
персиях неизменны.  

Поскольку выражения (27), (29), (30) написа-
ны для ФНЧ, будет полезным рассмотреть их 
дисперсионный аналог. Как и в (30) для ПФ, для 
дисперсий имеем 

 
 

 

1 ; 0 ;2
1 0 ,,
2

  
CA mA A A mA

B mB
CB mB B

        
        



 (31) 

где ωCA, ωCB – дисперсии сопряженных каналов A и 
B; ωmA, ωmB – предельно возможные дисперсии эк-
вивалентных несопряженных каналов (рис. 4); ∆ωA, 
∆ωB – управляемое изменение дисперсий сопряжен-
ных каналов, являющихся ФНЧ. В частности, если 

∆ωA = ∆ωB = 0 и ωmA = ωmB, то 21
4CA CB m     – 

управление при одинаковых неизменных диспер-
сиях сопряженных каналов A и B. 

Таким образом, для управления сопряженны-
ми каналами следует рассчитать ПФ регуляторов 
так, как будто эти каналы независимы, а затем 
учесть условия сопряжения (30) или (31). 

В процессе управления дисперсиями возника-
ет вопрос о скорости их изменения. В случае вза-
имного изменения дисперсий сопряженных кана-

лов, например: 
0

0
A mA

mB B

 
   

 либо 

0;
0 ,

mA A

B mB

  
  

 изменения следует проводить 
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квазистатически, т. е. на порядок дольше средне-
го времени переходного процесса в каналах 
управления. 

Построение примера расчета одномерного 
одноканального варианта управления сопря-
женными переменными в рамках редуциро-
ванной модели. Здесь, в русле предыдущего раз-
дела с использованием методов функционального 
анализа, будет приведен расчет регуляторов для 
управления часто встречающимися в ЭМО со-
пряженными переменными – скоростью и поло-
жением исполнительного механизма (ИМ). Рас-
четная схема сопряженных каналов скорости (ка-
нал A) и положения (канал B) («разомкнутый» 
вариант системы) представлена на рис. 6. 

СПО 
 

Рис. 6. Расчетная схема сопряженных каналов:  
скорости и положения 

Fig. 6. Calculation scheme of conjugated channels:  
velocities and positions 

WDA 

WDB 

A a 

b 

WOA WRA 

WOB WRB B 
+ WP 

 
На рис. 6 использованы те же обозначения, 

что и на рис. 5, но добавлены блоки ПФ датчиков 
каналов WDA и WDB, входящих в СПО, которые 
здесь для простоты предполагаются равными 
единице. Система имеет общий блок WP, который 
и сопрягает оба канала. 

Пусть, например, оптимальная ПФ системы 
управления переменной А имеет вид ( )CAW s   

2

2
,

2
A

As s




 
 а функция Грина прибора WP (s) = 

,
1

K
T s







 где Kμ, Tμ – коэффициенты ИУП. ПФ 

объекта WOA(s) имеет вид 1( ) ,ОА
ОА

W s
T s

  где 

TOA – постоянная времени объекта по перемен-
ной А. Тогда ПФ регулятора скорости для пере-
менной А, как переменной независимого канала, 
имеет вид 

 
2 1

( ) .
2

CA A ОА
RА

P OA A

T sW T
W s

W W К s





 

 
 (32) 

Если бы переменной B не существовало, то 
следовало бы положить 1 2T ,А m      и 

вместо (32) получилось бы ( ) .
2
ОА

RА
T

W s
T K 

  Од-

нако переменная B существует и находится в со-
пряжении с переменной A, и для WRB(s) следует 
получить выражение, аналогичное (32). 

Рассчитаем ПФ регулятора положения W ( ).RB s  

Полагаем также 
2

2
( ) ;

2
B

CB
B

W s
s s




 
 ПФ объ-

екта 
2

1( ) ,OB
OB

W s
T s

  TOB – постоянная времени 

объекта по переменной B. Имеем для регулятора 
независимого канала управления по положению 

 
2 1

.
2

CB B OB
RB

P OB B

T sW T
W s

W W K s





 

 
 (33) 

Если бы переменной B не существовало, то 
следовало бы положить 1 2T ,B m      и 

вместо (33) получилось бы ( ) .
2
ОB

RB
T

W s s
T K 

  

Для выделения целых частей в дробях (32), 
(33) выполним деление «углом». Получим: 

 
2 1 2

( ) ;
2

AA OA
RA

A

TT
W s T

K s





        
 (34) 

2
( ) B OB

RB
T

W s
K


   

 
22 2

1 2 .
2

B B
B

B

T
T s T

s


 

   
     
   

 (35) 

Для получения (35) дважды выполнено деле-
ние «углом», что соответствует разложению 
дробно-рациональной функции в ряд Лорана с 
удержанием остаточного слагаемого. 

Найдем операторы (функции Грина) регуля-
торов wRA(t, ωA), wRB(t, ωB) во временном пред-
ставлении: 

0

2
(0)( , ) ( , )A OA

RA A и иG
T

w t T t t
K 


        

 ( 1) 22 (1 2 ) ( , )e ,At
A A иRT t  


        (36) 
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  
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 
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 (37) 
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Функции (0) (1) ( 1)   , , , RG G
    представленные в 

(36), (37), будут описаны далее. 
Выражения (36), (37) – это не оригиналы (34), 

(35), так как имеют ряд модельных особенностей: 
– для последующего расчета скалярного про-

изведения в функциональном пространстве 
(свертки) требуется, чтобы слагаемые в (36), (37) 
были производными от оригиналов изображений 
(34), (35); 

– по этой же причине все слагаемые (36), (37) 
должны обращаться в нуль в начале координат, 
однако в приведенном примере в операторах ре-
гуляторов используются вейвлеты из гауссова 
волнового пакета и производная экспоненты, ко-
торые в начале координат не обращаются в нуль. 

Эти особенности реализованы здесь следую-
щим образом. Дисперсия ωu базового вейвлета 

гауссова волнового пакета (0)G  в (36), (37) долж-

на быть как минимум на порядок больше макси-
мальной дисперсии каналов ωm, так как в рас-
сматриваемой редукции I → 0. Полагаем поэтому 

15 .u

m
c


 


 В свою очередь, интервал квантова-

ния T должен быть настолько мал, чтобы обеспе-
чить достаточно точный расчет вейвлетов. По-

этому полагаем 1 .uT
c

   Временной сдвиг tu0
 

для базового вейвлета соответствует половине его 
дисперсии и рассчитывается по выражению 

 
0

1 ln 2.и
и

t 


 (38) 

Для вейвлетов с порядком более нулевого 
можно, руководствуясь «дисперсионным прави-
лом» (38), определить смещение tum для финит-

ных функций ( )m
G  при m = 1, 2, … . Потребуем 

для этих функций одинаковой с (0)
G  точности 

расчета значений. Это требование приводит к 

уравнению ( ) ( , ) .
2

m и
иG t


  


 Так как данное 

уравнение имеет 2m корней, следует выбрать ко-
рень с максимальным по модулю значением t – 
это и будет смещение tum. 

В (36), (37) из-за сложности аналитического 

расчета интеграла (0) ,G  используется ( 1)
R
  – ра-

циональная аппроксимация интеграла от 

(0) ( , ) :uG t   ( 1) 2( , ) arctg .и иR t t   


 Вейвлет 

( 1)
R
  обеспечивает нуль экспонентам при t = 0. 

Система вейвлетов гауссова волнового пакета 
( ) ( , )m

иG t   имеет вид ( ) ( , )m
иG t    

2 21
( 1) ( )e ,и

m
tm и

m иH t



  


 где Hm – полиномы 

Эрмита порядка m. 
Управления uA (t, ωA), uB (t, ωB) сопряженны-

ми переменными A, B (скоростью и положением 
соответственно) будут иметь вид ( , )A Au t    

0
( , ) ( ) ,

t

RA A Aw t e d       
0

( , )
t

B B RBu t w    

( , ) ( ) d ,B Bt e       где eA, eB – рассогласования 
по соответствующим переменным; τ – внутренняя 
переменная интегрирования по времени в преде-
лах от 0 до t. 

Ранг M матриц операторов wR(t – τ, ω) соста-

вит .иM c T   

Обсуждение результатов. Использование в 
статье операторных форм ˆ ˆˆz z z z zS x p t E   и 
ˆ ˆˆ ,z z z z zS p x E t   а также следующих из них че-

тырех фундаментальных операторных аргументов 
обусловлено возможностью представлять движе-
ние СПО в виде материальной квазиточки (квази- – 
потому, что точка «размыта в пятно», в центре 
которого – среднее положение СПО). Комплекс-
ные операторные формы (5), (8) имеют совер-
шенно симметричный вид. Они позволяют объ-
единить не только обменную и статистическую 
составляющие движения, но и указать на линей-
ную и циклическую части координаты и времени 
СПО, охватывая тем самым анизоэнтропийную и 
изоэнтропийную части модели движения. 

Решение ПЗОМ для СП значительно выходит 
за рамки метода Хевисайда, так как этот метод 
служит подспорьем для решения линейных 
обыкновенных дифференциальных уравнений, 
т. е. он построен для детерминированных моде-
лей. Указанная задача, по существу, статистиче-
ская, и только редукционная модель позволила 
применить в части решения аналитику ПФ. При 
этом одномерный одноканальный вариант реду-
цированной модели наиболее прост с точки зре-
ния понимания происходящих процессов. Однако 
остаются сомнения в обоснованности примене-
ния аналитики ПФ. 



Электротехника 
Electrical Engineering 

98 

Использование аппарата вейвлетов в расчетном 
примере не было обязательным. Вейвлеты позво-
ляют избежать сингулярностей при переходе из  
s-представления в t-представление. Можно было бы 
построить правильные дробно-рациональные вы-
ражения для регуляторов, немного изменив исход-
ные критерии качества. В этом случае можно было 
бы избежать временных сдвигов tum, однако появи-
лись бы небольшие потери в быстродействии. 

Проблема выбора числа c в расчетном примере 
фундаментальна для этой и других задач управления 
ЭМО и восходит к неправомерности применения к 
ним результатов теоремы Котельникова–Шеннона. 
Возможно, теорема нуждается в расширении на си-
стемы с почти разрывным спектром. 

Выводы. Объединение свойства сопряженно-
сти переменных и ИЭ-обмена в СПО позволяет 
решать важные задачи управления в ЭМО. 

Для формализации ИЭ-обмена в случае, когда 
переменные в системе управления сопряжены, 
построены сопряженные операторы – аргументы 
как фундаментальные элементы соответствую-
щих математических моделей. 

Построена и обоснована редуцированная мо-
дель для одномерного одноканального варианта 
управления сопряженными переменными в русле 
управления ЭМО. 

С целью верификации результатов выполнен 
расчет важного для области ЭМО примера управ-
ления сопряженными переменными. 

Из приведенных результатов видна необходи-
мость разработки нередуцированной модели 
управления сопряженными переменными по (1), 
(19)–(21), наряду с совершенствованием аналити-
ческого и схемного языков описания моделей. 
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