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Аннотация. Цель настоящего исследования состоит в разработке адаптивной системы акустической диагно-
стики, способной выявлять редкие и критически важные неисправности промышленного оборудования на 
основе анализа аудиосигналов. В качестве методологической основы используется совмещение модифици-
рованной архитектуры генеративно-состязательной сети WaveGAN, алгоритмов обучения с подкреплением 
Deep Q-Network и многоагентного анализа с динамической адаптацией. Такая интеграция позволяет не 
только генерировать физически достоверные синтетические сигналы для компенсации дисбаланса классов, 
но и адаптировать поведение системы в зависимости от характеристик акустической среды и типа оборудо-
вания. Эксперименты, проведенные с использованием набора данных MIMII, продемонстрировали высокие 
показатели точности (до 96 %) и полноты классификации на различных типах оборудования. Полученные 
результаты свидетельствуют о высокой устойчивости системы к внешним шумам и ее способности к свое-
временному обнаружению импульсных и переходных дефектов. Научная новизна работы заключается в 
синтезе генеративного подхода и мультиагентной архитектуры с контекстной адаптацией к производствен-
ным условиям, что обеспечивает комплексный и интерпретируемый анализ аудиосигналов. Практическая 
значимость обусловлена возможностью внедрения разработанной системы в состав интеллектуальных 
платформ мониторинга технического состояния оборудования в условиях реального производства. 
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Abstract. The purpose of this study is to develop an adaptive acoustic diagnostic system capable of detecting 
rare critically important malfunctions of industrial equipment based on audio signal analysis. The combination 
of the modified architecture of the generative adversarial network WaveGAN, reinforcement learning algo-
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rithms Deep Q-Network multi-agent analysis with dynamic adaptation is used as a methodological basis. This 
integration allows not only to generate physically reliable synthetic signals to compensate for class imbalance, 
but also to adapt the behavior of the system depending on the characteristics of the acoustic environment the 
type of equipment. Experiments conducted using the MIMII dataset demonstrated high accuracy (up to 96 %) 
classification completeness on various types of equipment. The results obtained indicate the high stability of 
the system to external noise its ability to timely detect pulse transient defects. The scientific novelty of the work 
lies in the synthesis of a generative approach a multi-agent architecture with contextual adaptation to produc-
tion conditions, which provides a comprehensive interpretable analysis of audio signals. The practical signifi-
cance is due to the possibility of introducing the developed system into intelligent platforms for monitoring the 
technical condition of equipment in real-world production. 

Keywords: acoustic recognition, generative-adversarial networks, reinforcement learning, multi-agent systems, 
predictive maintenance, WaveGAN, industrial equipment, intelligent monitoring 
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Введение. Современное промышленное про-
изводство характеризуется возрастающей слож-
ностью технологических процессов, усложнени-
ем инфраструктуры оборудования и высокими 
требованиями к его надежности и безаварийной 
эксплуатации. В этом контексте особенно остро 
стоит задача своевременного обнаружения разви-
вающихся дефектов, которые могут привести к 
непредвиденным простоям, авариям и, как след-
ствие, значительным экономическим потерям. 
Традиционные методы технического обслужива-
ния, основанные на жестких регламентах, усту-
пают место стратегиям предиктивного (прогно-
стического) обслуживания, опирающимся на не-
прерывный мониторинг состояния оборудования 
и анализ аномальных отклонений в поведении 
рабочих узлов [1]–[3]. 

Акустическая диагностика как метод нераз-
рушающего контроля представляет собой одно из 
наиболее перспективных направлений в области 
мониторинга технического состояния оборудова-
ния. Она обладает рядом преимуществ: возмож-
ность дистанционного применения, высокая чув-
ствительность к импульсным и переходным про-
цессам. Однако применение акустических подхо-
дов в условиях реального промышленного про-
изводства связано с рядом вызовов. Во-первых, 
промышленная акустическая среда отличается 
высоким уровнем фонового шума (до 90 дБ), 
наличием вибрационных и электромагнитных 
помех, нестабильной акустической обстановкой 
[4], [5]. Во-вторых, реальные датасеты содержат 
крайне несбалансированную информацию – кри-
тические неисправности, как правило, составля-
ют менее 5 % всех наблюдаемых случаев [6].  

В-третьих, акустические сигналы различных ви-
дов оборудования значительно различаются, что 
требует от систем диагностики высокой адаптив-
ности и универсальности [7]. 

В последние годы широкое распространение 
получают технологии искусственного интеллекта, 
в частности, методы машинного обучения, спо-
собные анализировать большие объемы данных и 
выявлять скрытые зависимости. Генеративно-
состязательные сети (Generative Adversarial Net-
works, GAN), например модифицированные ар-
хитектуры WaveGAN, показали высокую эффек-
тивность при генерации синтетических аудиосиг-
налов, способных компенсировать дисбаланс 
обучающей выборки без потери физических 
свойств сигналов [8], [9]. В то же время, методы 
обучения с подкреплением, включая Deep Q-Net-
work (DQN), позволяют динамически адаптиро-
вать поведение диагностических систем под из-
меняющиеся условия внешней среды [10]. 

Научные исследования последних лет демон-
стрируют перспективность гибридных решений, 
в которых сочетаются генеративные модели, глу-
бокие нейронные сети и адаптивные механизмы 
принятия решений [11]–[13]. Однако большин-
ство существующих решений либо сосредоточе-
ны на ограниченном классе оборудования, либо 
требуют большого количества размеченных дан-
ных, что затрудняет их практическое применение. 

Настоящие исследования направлены на разра-
ботку интеллектуальной системы акустической ди-
агностики, способной эффективно функциониро-
вать в условиях ограниченных данных, сильного 
шума и разнообразия оборудования. Предлагается 
комплексный подход, сочетающий генеративное 
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усиление сигналов (на базе модифицированной ар-
хитектуры WaveGAN), мультиагентный анализ 
(спектральный, временной, контекстный) и меха-
низм динамической адаптации весов агентов с ис-
пользованием глубокого обучения с подкреплением.  

Описание алгоритма диагностики. Алго-
ритм функционирования интеллектуальной систе-
мы акустической диагностики реализует последо-
вательную обработку входных акустических сигна-
лов с применением методов генеративного модели-
рования, мультиагентного анализа и механизмов 
обучения с подкреплением. Архитектура системы 
разработана для работы в условиях промышленно-
го шума, ограниченного числа размеченных дан-
ных и необходимости высокой чувствительности к 
различным типам неисправностей. Общая схема 
алгоритма представлена на рис. 1. 

1-й этап. Первичной задачей системы служит 
подготовка входных данных для дальнейшего ана-
лиза. Алгоритм реализует следующие операции: 

– адаптивная фильтрация шума: применяет-
ся, например, фильтр Винера для подавления ста-
ционарных и нестационарных помех, характер-
ных для производственной среды; 

– извлечение спектральных признаков: аудио-
сигнал преобразуется в Mel-спектрограмму, обес-
печивающую более устойчивое представление 
акустического сигнала в частотной области; 

– нормализация амплитуд: выполняется для 
унификации динамического диапазона всех вход-
ных сигналов. 

– стохастические искажения: реализуются пу-
тем применения аугментационных методов (напри-
мер, временной маскировки или частотного шумо-
вого вмешательства) с целью повышения обобща-
ющей способности модели на этапе обучения. 

Генеративное усиление данных. Для компен-
сации дисбаланса обучающих выборок использу-
ется модуль генерации синтетических данных, 
основанный на модифицированной архитектуре 
WaveGAN, преимущества которой включают [13]: 

– генерация сигналов во временной области: 
позволяет сохранить фазовую структуру и им-
пульсные характеристики, важные для диагно-
стики кратковременных дефектов; 

– частотно-селективная регуляризация: при-
меняется к синтетическим сигналам для прибли-
жения их характеристик к реальным данным в 
целевом частотном диапазоне; 

– физическая достоверность сигналов: обеспе-
чивается за счет использования улучшенной версии 
модели с градиентным штрафом (Wasserstein GAN 
with Gradient Penalty, WGAN-GP). 

Архитектура включает два основных компо-
нента – генератор и дискриминатор. На вход ге-
нератору подается случайный шумовой вектор z, 
который преобразуется в сигнал x(t) – синтетиче-
ский акустический фрагмент, соответствующий 
временной структуре реальных данных. Дискри-
минатор получает на вход как реальные, так и 
сгенерированные сигналы и возвращает вероят-
ность принадлежности сигнала к реальному рас-

  

 

 
 
 

Рис. 1. Общая схема алгоритма диагностики 
Fig. 1. General diagram of the diagnostic algorithm 
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пределению. Обучение осуществляется в состяза-
тельной форме, где цель генератора – «обмануть» 
дискриминатор, а задача дискриминатора – точно 
различать реальные и синтетические сигналы.  

2-й этап. Обработка сигнала осуществляется 
параллельно четырьмя агентами, каждый из кото-
рых специализируется на определенном аспекте 
анализа: 

– спектральный агент: анализирует частотные 
характеристики сигнала, включая пики, полосы 
пропускания и энергию по частотным полосам; 

– временной агент: извлекает временные при-
знаки – пики амплитуды, длительность импульсов, 
энтропию и автокорреляционные характеристики; 

– агент окружения: использует сведения о 
внешнем контексте – например, идентификатор 
оборудования, текущую производственную фазу, 
интенсивность шума; 

– контекстный агент: интегрирует историю 
предшествующих наблюдений, оценивает изме-
нения в сигнале по времени и формирует времен-
ные зависимости. 

Каждый агент формирует вектор вероятно-
стей по классам (напр. «норма», «дефект 1», «де-
фект 2»). 

3-й этап. На завершающем этапе результаты, 
полученные от агентов, передаются в модуль 
принятия решений с динамическим взвешивани-
ем. Данный модуль: 

– обучается с использованием глубокого Q-
обучения; 

– получает на вход векторы вероятностей от 
агентов, а также метаинформацию о сигнале 
(уровень шума, достоверность спектра); 

– вычисляет оптимальное распределение весов 
между агентами для конкретного входного сигнала; 

– формирует итоговое диагностическое реше-
ние на основе агрегированного вероятностного 
вектора с максимальной уверенностью. 

Диагностический вывод. На выходе алгорит-
ма формируется диагностическое заключение – 
метка класса технического состояния (например, 
«норма», «износ подшипников», «кавитация»). 
Результат дополнительно может включать коэффи-
циент доверия, указывающий на уровень уверен-
ности модели в принятом решении, а также диа-
гностическую трассировку по каждому агенту, что 
способствует интерпретируемости алгоритма. 

Математическая модель акустического 
сигнала. Математическое описание структуры 
акустического сигнала, регистрируемого в усло-

виях промышленной эксплуатации, подробно 
представлено в [14], включая аддитивную модель, 
методы спектрального анализа, описание шумо-
вых компонентов и фильтрацию. В настоящей 
статье сохраняется базовая архитектура модели, 
но основное внимание уделяется новому компо-
ненту – генеративному усилению данных с по-
мощью модифицированной модели WaveGAN, 
разработанному [15] специально для условий 
промышленной диагностики. 

Генеративное усиление данных. Архитектура 
модели WaveGAN. Для решения задачи недостатка 
размеченных акустических данных применяется 
модифицированная архитектура WaveGAN, адап-
тированная к специфике промышленной акусти-
ки. В отличие от моделей, оперирующих спектро-
граммами, WaveGAN работает напрямую с вре-
менными рядами, что обеспечивает: 

1. Сохранение фазовой информации – важно 
для корректной генерации импульсных дефектов. 

2. Высокое временное разрешение – позволя-
ет воспроизводить кратковременные переходные 
процессы. 

3. Физическую достоверность сигналов, соот-
ветствующих законам распространения звука. 

Генератор G(z) принимает на вход случайный 
вектор шума и возвращает реалистичный акустиче-
ский сигнал x = G(z), имитирующий реальные дан-
ные. Дискриминатор D(x, θD) оценивает вероят-
ность того, что входной сигнал реален. Обучение 
происходит в соответствии с функцией потерь θD – 
это вектор весов и смещений нейронной сети дис-
криминатора, который оптимизируется в процессе 
обучения для точного различения реальных и сге-
нерированных данных [16], [17]: 

real~

~ ( )

min max [ log ( )]

[log(1 ( ( )))],
G D x p

p

E D x

E D G



 z z z
 

где Ex – математическое ожидание по всем реаль-
ным примерам x; Ez – математическое ожидание 
по всем векторам шума z; preal – распределение 
реальных данных, из которого взяты обучающие 
примеры; p(z) – априорное распределение шу-
ма генератора, обычно многомерное гауссово или 
равномерное распределение. 

Для повышения устойчивости и качества ге-
нерации используется улучшенная версия – Wa-
sserstein GAN с градиентным штрафом (WGAN-
GP). Соответствующая функция потерь: 
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где xg – сгенерированные данные из распределе-
ния pg; D(xg) – значение дискриминатора на сге-

нерированных данных;  ...  – математическое 
ожидание (усреднение по многим примерам); xr – 
реальные данные из распределения pr; x̂  – точки, 
полученные линейной интерполяцией между ре-
альным и сгенерированным примерами; ˆ ˆ( )xD x  – 

градиент дискриминатора по входу ˆ;x  2...  – 

норма градиента (длина вектора градиента); λ – 
коэффициент градиентного штрафа (gradient 
penalty weight). Это гиперпараметр, который кон-
тролирует вес (важность) компонента градиент-
ного штрафа в общей функции потерь. 

Экспериментальные исследования. Источ-
ники акустических данных и объекты диагно-
стирования: для оценки работоспособности 
предложенного алгоритма (на базе алгоритма бы-
ла написана программа) использовались откры-
тые акустические базы, содержащие аудиофраг-
менты работы промышленного оборудования в 
различных состояниях. Одним из основных ис-
точников данных стал открытый датасет MIMII 
Dataset (Malfunctioning Industrial Machine Investi-
gation Inspection), опубликованный исследователь-
ской группой Hitachi и доступный на платформе 
Zenodo. Данный набор включает более 1000 аудио-
фрагментов в формате WAV, записанных с различ-
ными типами оборудования, в том числе: 

– центробежные насосы (pump); 
– осевые и радиальные вентиляторы (fan); 
– клапанные узлы (valve); 
– винтовые компрессоры (slide compressor). 
Каждый тип оборудования представлен в двух 

режимах: нормальном и аномальном, включая 
такие неисправности, как повышенное трение, 
разбалансировка, перегрев, кавитационные шумы 
и нестабильные вибрации. Записи осуществля-
лись в реальных производственных условиях с 
добавлением фонового шума, характерного для 
машиностроительных, энергетических и химиче-
ских объектов. В библиотеке MIMII представле-
ны, в частности, акустические сигналы от обору-
дования со следующими типами неисправностей: 

– кавитация и заклинивание сопровождаются 
выраженными переходными процессами, что 
увеличивает нагрузку на временной агент и при-
водит к большей вычислительной стоимости; 

– аэродинамические шумы и утечка воздуха 
имеют более устойчивый спектральный характер, 
что снижает общий объем обработки. 

Программное обеспечение и инструменты ана-
лиза. Все эксперименты проводились в среде 
Python 3.8 с использованием следующих библиотек: 

– Librosa – для загрузки и преобразования 
аудиосигналов (расчет спектрограмм, фильтра-
ция, извлечение признаков); 

– Scipy, Pytorch и NumPy – для цифровой об-
работки сигналов; 

– TensorFlow 2.6 и Keras – для построения и 
обучения нейросетевых моделей; 

– Scikit-learn – для расчета метрик классифи-
кации; 

– Psutil – для мониторинга потребления си-
стемных ресурсов центрального процессорного 
устройства (ЦПУ) и оперативного запоминающе-
го устройства (ОЗУ); 

– Matplotlib, Seaborn – для визуализации ре-
зультатов. 

Модель тестировалась на компьютере с GPU 
NVIDIA RTX 3090 и 32 Гбайт оперативной памяти. 

Для оценки качества акустического распозна-
вания типа неисправности оборудования исполь-
зовались метрики [18]: доля верных ответов, точ-
ность, полнота, F1-мера. 

Результаты и обсуждение эксперимента. 
Эксперимент включал следующие этапы: 

Подготовка входных данных. Все аудиофайлы 
из набора MIMII были приведены к единому форма-
ту: длительность 5 с, частота дискретизации 16 кГц, 
моно. Далее проводилась нормализация амплитуды 
и извлечение признаков (Mel-спектрограммы и вре-
менные характеристики), а также формирование 
синтетических примеров с помощью генеративной 
модели WaveGAN. Генерация осуществлялась от-
дельно по каждому типу неисправности. 

Организация обучающей и тестовой выбо-
рок. Данные были разделены в пропорции 80/20 
на обучающую и тестовую части. Синтетические 
данные включались только в обучающую часть и 
не использовались при тестировании, чтобы из-
бежать утечки данных. 

Выход модели. Выходом модели служил вероят-
ностный вектор по классам (норма, дефект 1, де-
фект 2), который затем преобразовывался в финаль-
ный диагноз на основе максимального значения. 
В процессе адаптации использовалась оценка дове-
рия агентов, определяемая динамически через DQN. 
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Анализ ошибок. Особое внимание уделялось 
случаям ложноотрицательных решений, так как 
они представляют наибольшую опасность при 
эксплуатации.  

Анализ результатов эксперимента показал, 
что предложенная модель, основанная на ансам-
бле агентов с генеративным усилением и динами-
ческой адаптацией весов, обеспечивает хорошую 
точность распознавания неисправностей по аку-
стическим данным в широком диапазоне типов 
оборудования. Табл. 1 представляет сводные зна-
чения метрик для различных классов промыш-

ленного оборудования. Как видно из таблицы, мо-
дель демонстрирует стабильные показатели F1-
меры на уровне 90–96 %, что подтверждает ее вы-
сокую чувствительность.  

Оценка вычислительной нагрузки. Для оценки 
применимости модели в условиях ограниченных 
вычислительных ресурсов была измерена нагруз-
ка на компьютер всех компонентов (табл. 2). 
Рис. 2 отражает среднюю нагрузку на систему 
при обработке одного аудиофрагмента (длитель-
ность – 1 с, частота –16 кГц). 

Табл. 1. Показатели эффективности распознавания неисправностей 
Tab. 1. Fault recognition efficiency indicators 

Тип оборудования Тип неисправности Доля верных 
ответов, % Точность, % Полнота, % F1-мера, % 

Насос Кавитация 95.2 93.7 96.5 95.1 
Насос Износ подшипников 94.6 91.9 95.8 93.8 
Вентилятор Разбалансировка 92.8 89.6 93.2 91.3 
Вентилятор Аэродинамический шум 91.1 88.2 92.4 90.2 
Клапан Заклинивание 96.4 94.5 97.8 96.1 
Компрессор Повышенное трение 93.7 90.8 94.1 92.4 
Компрессор Утечка воздуха 94.1 91.2 95.0 93.0 

Табл. 2. Сравнение загрузки CPU, RAM и времени выполнения по компонентам 
Tab. 2. Comparison of CPU, RAM execution time load by components 

Компонент Время обработки, мс Использование ЦПУ, % Использование ОЗУ, Мбайт 
Предобработка сигнала    11.2   8.3   42 
Агент спектрального анализа    26.4 17.5 238 
Агент временного анализа    15.1 10.8 114 
Агент анализа окружения    22.9 14.6 178 
Агент контекстной оценки    30.3 16.7 192 
Модуль динамического взвешивания     3.6   3.2   31 

Итого 109.5 70.1 795 
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 Рис. 2. Сравнение загрузки ЦПУ, ОЗУ на систему при диагностике различных типов неисправностей 
Fig. 2. Comparison of CPU, RAM load on the system when diagnosing different types of faults 
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Модель обеспечивает анализ в режиме, близком 
к реальному времени (около 10 обработок в секун-
ду) и может быть реализована на промышленных 
контроллерах или встраиваемых системах с под-
держкой ускорителей искусственного интеллекта. 

На рис. 2 показано сравнение загрузки ЦПУ, 
ОЗУ на систему при диагностике различных ти-
пов неисправностей. 

Проведенные экспериментальные исследова-
ния подтвердили эффективность предложенного 
алгоритма акустической диагностики, особенно в 
условиях ограниченности обучающих данных и 
высокой шумовой загруженности. Применение 
генеративно-состязательной сети WaveGAN поз-
волило достоверно синтезировать сигналы, со-
храняющие ключевые физико-акустические ха-
рактеристики, что способствовало увеличению 
полноты и точности распознавания различных 
типов неисправностей. Особенно значительное 
улучшение было зафиксировано для классов с 
ярко выраженной импульсной структурой – та-
ких, как кавитация и заклинивание клапанов. 

Многоагентная архитектура анализа проде-
монстрировала способность к дифференцирован-
ной обработке различных аспектов акустического 
сигнала. За счет разделения функциональности 
между спектральным, временным, контекстным 
агентами и агентом окружения удалось повысить 
интерпретируемость принимаемых системой ре-
шений, а также обеспечить более устойчивую 
реакцию на нестабильные внешние условия.  

Ключевым элементом системы стал модуль 
динамического взвешивания, реализованный на 
основе алгоритма Deep Q-Network. Его использо-
вание обеспечило адаптацию модели к изменяю-
щимся параметрам входных данных без необхо-
димости повторного обучения всех агентов. Это 
свойство особенно актуально для применения в 
реальных производственных системах, где усло-
вия акустической среды могут меняться в непред-
сказуемом режиме. 

Однако, несмотря на полученные положитель-
ные результаты, выявлены и некоторые ограниче-
ния. Так, точность классификации снижается при 
наличии слабовыраженных дефектов, чьи спек-
тральные признаки слабо отличаются от фонового 
шума. Кроме того, валидация алгоритма производи-
лась на одном открытом наборе данных (MIMII), 
что ограничивает возможность прямой экстраполя-
ции полученных результатов на иные производ-
ственные условия без дополнительной адаптации. 

Заключение. В данной статье предложена и 
апробирована интеллектуальная система акустиче-
ской диагностики промышленного оборудования, 
основанная на интеграции генеративно-состяза-
тельных сетей, обучения с подкреплением и муль-
тиагентного анализа. Научная новизна исследова-
ния заключается в синтезе генеративного подхода 
(модифицированная архитектура WaveGAN), глу-
бокого Q-обучения и мультиагентной архитектуры с 
контекстной адаптацией, что позволило реализовать 
гибкий и адаптивный механизм диагностики в 
условиях нестабильной акустической среды. 

Разработанный алгоритм обеспечивает хоро-
шую точность и полноту распознавания неисправ-
ностей, устойчив к акустическим помехам и харак-
теризуется высокой степенью интерпретируемости 
принимаемых решений. Практическая значимость 
разработанного решения заключается в возможно-
сти его интеграции в существующие системы пре-
диктивного обслуживания, что обеспечит своевре-
менное обнаружение критических неисправностей, 
минимизацию времени простоя и повышение 
надежности эксплуатации оборудования. 

Перспективы дальнейших исследований свя-
заны с расширением перечня типов диагностиру-
емого оборудования, повышением устойчивости 
модели к слабовыраженным аномалиям, а также 
разработкой облегченной версии алгоритма для 
встраиваемых вычислительных платформ с огра-
ниченными ресурсами. 
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