

ФИЗИКА ТВЕРДОГО ТЕЛА И ЭЛЕКТРОНИКА

УДК 539.3

А. В. Михеев

ЛОКАЛЬНАЯ УСТОЙЧИВОСТЬ ПСЕВДОСФЕРИЧЕСКИХ ОРТОТРОПНЫХ ОБОЛОЧЕК НА УПРУГОМ ОСНОВАНИИ

Рассматривается вопрос расчета устойчивости ортотропных псевдосферических оболочек моделей Тимошенко и Кирхгофа–Лява. Проанализирована зависимость параметра критической нагрузки от коэффициента сдвига и упругих характеристик оболочки и основания.

Псевдосфера, оболочки, расчет устойчивости

При рассмотрении модели тонких оболочек для расчета их устойчивости в настоящее время используются две основные гипотезы: гипотеза Кирхгофа-Лява, не принимающая во внимание поперечный сдвиг волокон при деформации оболочки [1], и гипотеза Тимошенко, его учитывающая [2]. Как показывает сравнение, при одних и тех же параметрах жесткости оболочки и основания применение модели Тимошенко дает более низкое значение критической нагрузки по сравнению с моделью Кирхгофа-Лява [3]. Для решения задач о потере устойчивости тонких оболочек в ряде случаев применим так называемый локальный подход, при котором коэффициенты системы уравнений устойчивости считаются постоянными («замораживаются»), а граничные условия игнорируются. В случае оболочек отрицательной гауссовой кривизны без упругого основания их форма потери устойчивости характеризуется, в зависимости от вида нагружения, распространением вмятин на всю срединную поверхность либо их вытягиванием вдоль одной из образующих [4]. При наличии упругого основания становится возможным использование локального подхода, поскольку, как следует из результатов, полученных в [5], при определенных соотношениях упругих констант потеря устойчивости сопровождается образованием большого количества малых вмятин на поверхности оболочки. Цель данной статьи – применив результаты, полученные для ортотропных оболочек в [3], провести расчет зависимости параметра критической нагрузки от параметра сдвига и упругих характеристик оболочки и основания, а также определить местонахождение наиболее слабой параллели псевдосферы, в окрестности которой происходят деформации при достижении критической нагрузки.

Геометрическое моделирование оболочки. Согласно классическому подходу двумерной теории оболочек, рассматриваемая оболочка моделируется своей срединной поверхностью (псевдосферой), а соответствующие напряжения и моменты усредняются [4]. Псевдосфера является поверхностью, полученной вращением трактриссы

$$z(\rho) = \operatorname{arch} \frac{1}{\rho} - \sqrt{1 - \rho^2}$$

относительно оси OZ (рис. 1). Ее главные кривизны определяются как

$$K_{\rho} = -\frac{\sqrt{1-\rho^2}}{\rho}; \ K_{\theta} = \frac{\rho}{\sqrt{1-\rho^2}}.$$

а гауссова кривизна является постоянной и равна –1.

Математическая модель потери устойчивости оболочки. Рассмотрим псевдосферическую ортотропную оболочку с постоянной толщиной *h* и характерным линейным размером *R* на упругом изотропном основании жесткости ω . Введем на срединной поверхности рассматриваемой оболочки систему криволинейных координат α , β так, чтобы их направления совпали с направлением главных кривизн (рис. 1). Пусть E_1 , E_2 – модули Юнга оболочки в направлениях, параллельных α , β ; G_{12} – модуль сдвига в касательном направлении; G_{13} , G_{23} – модули сдвига в нормальном направлении, $G'_{i3} = k \cdot G_{i3}$, где i = 1, 2; k = 5/6 – коэф-

фициент, учитывающий неравномерность распределения напряжений сдвига по толщине оболочки; v_{12} , v_{21} – коэффициенты Пуассона; a_1 , a_2 – коэффициенты сдвига; k_1 , k_2 – главные кривизны, отнесенные к характерному размеру срединной поверхности оболочки; $c_1 = E_2 / E_1$, $c_2 = G_{12} / E_1$ – параметры относительной жесткости оболочки. Оболочка подвергнута однопараметрическому нагружению вида

$$(T_1, T_2, S_0) = -\lambda(t_1, t_2, t_3),$$
 (1)

где (T_1, T_2, S_0) – начальные усилия; λ – параметр нагружения; (t_1, t_2, t_3) – безразмерные начальные усилия. Нормальная компонента вектора смещения *w* выражается формулой, зависящей от волновых чисел *p*, *q* и нормированных координат $x = \alpha A$, $y = \beta B$, где *A*, *B* – коэффициенты первой квадратичной формы срединной поверхности:

$$w = w_0 \sin \frac{px}{R} \cos \frac{qy}{R}.$$
 (2)

Согласно [3] введем в рассмотрение функцию нагружения:

$$\Lambda = \frac{1}{f_T(\phi)} \left(\frac{f_R(\phi)}{s^2 f(\phi)} + \frac{s^2 \cdot F(s,\phi)}{12N_v} + \frac{\omega}{s} \right), \tag{3}$$

где

$$N_{\rm v} = 1 - v_{12} v_{21}, \ \Lambda = \frac{\lambda R}{E_1 h^2}, \ s = \sqrt{\frac{h(p^2 + q^2)}{R}}, \ {\rm tg} \ \varphi = \frac{q}{p}.$$

В выражении (3) $f(\phi)$, $f_R(\phi)$, $f_T(\phi)$, $F(s,\phi)$ – вспомогательные функции, полное выражение для которых приведено в [3]. Критическая нагрузка получается минимизацией функции (3) по волновым числам *s*, ϕ .

Зависимость критической нагрузки от параметров жесткости. Рассмотрим псевдосферическую ортотропную оболочку со следующими характеристиками: $h_* = h/R = 0.01$, $v_{12} = 0.3$, $a_1 = a_2 = 0$. Тогда параметр Λ_* , определяющий значение критической нагрузки, находится следующим образом:

$$\Lambda_*(c_1, c_2, \omega) = \min^+ \Lambda_{,}$$

где минимизация функции нагружения Λ проводится по четырем параметрам s, φ , k_1 , k_2 , а знак «+» указывает на положительный минимум. Значения параметров главных кривизн k_1 , k_2 , при которых достигается искомый минимум функции нагружения, определяют положение наиболее слабой параллели, вдоль которой располагаются вмятины при потере устойчивости.

Проведем сравнительные расчеты для двух случаев нагружения: $(t_1, t_2, t_3) = (1, 1, 0)$ и $(t_1, t_2, t_3) = (0, 0, 1)$. Для выполнения численной минимизации и построения графиков используется программный пакет Mathematica 5.0. Зависимости параметра критической нагрузки Λ_* от параметров относительной жесткости оболочки c_1 , c_2 для случаев 1, 2 при жесткости основания $\omega = 1$ представлены на рис. 2, 3 соответственно. Некоторые их значения при $\omega = 0.5$ приводятся в табл. 1. Как видно из графиков и таблицы, критическая нагрузка возрастает с увеличением c_1 , c_2 . Так, в случае 1, $\omega = 0.5$ с увеличением $c_1 = E_2/E_1$ с 0.1 до 1 и $c_2 = G_{12}/E_1 = 0.3$ критическая нагрузка возрастает на 115.7 %, а при увеличении c_1 от 1 до 10 и тех же значениях ω , $c_2 - на 114.6$ %. В случае 2, $\omega = 0.5$ с увеличением отношения $c_1 = E_2/E_1$ с 0.1 до 1 и $c_2 = G_{12}/E_1 = 0.3$ критическая нагрузка возрастает на 24.6 %, а при увеличении c_1 от 1 до 10 и тех же значениях ω , $c_2 - на 224.9$ %. Значения параметров главных кривизн k_1 , k_2 для наиболее слабой параллели в первом и втором случаях представлены в табл. 2, 3.

Таблица 1

<i>c</i> ₁	Случай 1			Случай 2		
	$c_2 = 0.3$	$c_2 = 0.4$	$c_2 = 0.5$	$c_2 = 0.3$	$c_2 = 0.4$	$c_2 = 0.5$
0.1	0.242	0.242	0.242	0.419	0.445	0.468
1	0.522	0.537	0.555	0.522	0.539	0.555
10	1.120	3.264	-	1.696	1.698	-

Таблица 2

<i>c</i> ₁	c ₂ = 0.3		$c_2 = 0.4$		$c_2 = 0.5$	
	k_1	<i>k</i> ₂	k_1	<i>k</i> ₂	k_1	<i>k</i> ₂
0.1	-35.21	0.03	-47.12	0.02	-39.53	0.03
1	-1.00	1.00	-16.11	0.06	-1.00	1.00
10	-0.01	111.46	-0.23	4.40	-0.01	106.59

						Таблица З
<i>c</i> ₁	c ₂ = 0.3		$c_2 = 0.4$		$c_2 = 0.5$	
	k_1	k_2	k_1	k_2	k_1	k_2
0.1	-1.40	0.72	-1.36	0.74	-1.33	0.75
1	-1.00	1.00	-1.00	1.00	-1.00	1.00
10	-0.68	1.48	-0.68	1.48	_	_

При решении рассматриваемой задачи применимость локального подхода зависит от волновых чисел *p*, *q*, определяющих вытянутость вмятин, возникающих при потере устойчивости, вдоль одного из координатных направлений α , β . Данное условие определяется неравенством $\Gamma(c_1, c_2) \ge \varepsilon$, где c_1, c_2 – параметры относительной жесткости оболочки, $\Gamma(c_1, c_2) = \min\{p_*(c_1, c_2), q_*(c_1, c_2)\}, p_*, q_*$ – критические значения волновых чисел при $\Lambda = \Lambda_*$, а константа ε зависит от линейных размеров оболочки. Графики функции $\Gamma(c_1, c_2)$ для двух случаев нагружения $(t_1, t_2, t_3) = (1, 1, 0)$ и $(t_1, t_2, t_3) = (0, 0, 1)$ при $h_* = 0.01, v_{12} = 0.3, \omega = 0.5$ представлены на рис. 4 и 5.

Зависимость критической нагрузки от параметров сдвига. Рассмотрим псевдосферическую ортотропную оболочку модели Тимошенко со следующими характеристиками (см. [6]): $E_1 = 36 \cdot 10^3$ МПа, $E_2 = 26.3 \cdot 10^3$ МПа, $G_{12} = 4.9 \cdot 10^3$ МПа, $v_{12} = 0.105$, $h_* = 0.01$. Тогда $c_1 = 0.73$, $c_2 = 0.14$. Как и в предыдущем пункте, имеют место два варианта нагружения: $(t_1, t_2, t_3) = (1, 1, 0)$ и $(t_1, t_2, t_3) = (0, 0, 1)$. В данном случае

$$\Lambda_*(a_1, a_2, \omega) = \min^+ \Lambda,$$

где положительная минимизация функции нагружения Λ проводится по четырем параметрам s, φ , k_1 , k_2 . Также a_1 , a_2 – коэффициенты сдвига, которые при нахождении минимума должны оставаться постоянными.

Зависимости параметра критической нагрузки Λ_* от коэффициентов сдвига a_1 , a_2 для случаев 1, 2 при $\omega = 1$ приведены в табл. 4, а в табл. 5, 6 даются значения кривизн для наиболее слабой параллели в случаях 1 и 2 соответственно. Как видно из табл. 4, с возрастанием одного из параметров a_1 , a_2 при постоянном втором из них критическая нагрузка монотонно убывает. Так, в случае $\omega = 1$, $a_2 = 0.01$ при $(t_1, t_2, t_3) = (1, 1, 0)$ с возрастанием a_1 с 0.01 до 0.1 критическая нагрузка убывает на 4.2 %, а при $(t_1, t_2, t_3) = (0, 0, 1)$ – на 4.8 %.

						Таблица 4
a_1	Случай 1			Случай 2		
	$a_2 = 0.01$	$a_2 = 0.05$	$a_2 = 0.1$	$a_2 = 0.01$	$a_2 = 0.05$	$a_2 = 0.1$
0.01	0.688	0.671	0.642	0.694	0.682	0.667
0.05	0.678	0.661	0.636	0.679	0.666	0.650
0.1	0.659	0.646	0.623	0.660	0.646	0.627

<i>a</i> ₁	<i>a</i> ₂ = 0.01		$a_2 = 0.05$		<i>a</i> ₂ = 0.1	
	<i>k</i> ₁	k_2	k_1	k_2	k_1	k_2
0.01	-1.31	0.76	-1.51	0.66	-1.94	0.52
0.05	-1.14	0.88	-1.31	0.76	-1.66	0.60
0.1	-0.91	1.10	-1.05	0.96	-1.31	0.76

Таблица 5

Таблица б

<i>a</i> ₁	<i>a</i> ₂ = 0.01		$a_2 = 0.05$		$a_2 = 0.1$	
	<i>k</i> ₁	k_2	k_1	<i>k</i> ₂	k_1	<i>k</i> ₂
0.01	-1.06	0.94	-1.09	0.92	-1.13	0.89
0.05	-1.03	0.97	-1.05	0.95	-1.09	0.91
0.1	-0.98	1.02	-1.01	0.99	-1.05	0.96

На основании изложенного можно сделать следующие выводы. Анализ зависимости критической нагрузки от параметров ортотропии c_1 , c_2 и жесткости основания ω показал, что увеличение жесткости основания, так же как и модуля Юнга, материала оболочки вдоль одного из выбранных главных направлений приводит к возрастанию критической нагрузки, в то время как увеличение сдвига (в модели Тимошенко) – к ее убыванию. При этом сравнительная скорость возрастания или убывания критической нагрузки в случаях 1 и 2 на разных интервалах может быть различной.

Как показывают графики на рис. 2, 3 и данные, приведенные в табл. 1, 4, при фисированных значениях упругих параметров c_1 , c_2 и параметров сдвига a_1, a_2 соответственно, критическая нагрузка в случае 2 превосходит по значению ту, что имеет место в случае 1.

СПИСОК ЛИТЕРАТУРЫ

1. Кирхгоф Г. Механика. Лекции по математической физике. М.: Изд-во АН СССР, 1962.

2. Тимошенко С. П. Теория упругости. М.: ОНТИ, 1934.

3. Михеев А. В. Влияние сдвига на локальную устойчивость пологих ортотропных оболочек на упругом основании // Вестн. Санкт-Петерб. ун-та. Сер. 1: Математика. Механика. Астрономия. 2007. № 3. С. 137–143.

4. Товстик П. Е. Устойчивость тонких оболочек. М.: Наука, 1995.

5. Товстик П. Е. Локальная устойчивость пластин и пологих оболочек на упругом основании// Изв. РАН. 2005. Вып. 1. С. 147–160.

6. Агаловян Л. А., Гулгазарян Л. Г. Асимптотические решения неклассических краевых задач о собственных колебаниях ортотропных оболочек// Прикладная математика и механика. 2006. Т. 70, вып. 1. С. 111–125.

A. V. Mikheev

LOCAL STABILITY OF PSEUDOSPHERICAL ORTHOTROPIC SHELLS ON ELASTIC BASE

The question of calculation of stability of pseudospherical orthotropic shells in Timoshenko and Kirchhoff – Love models is considered. The dependence of critical load parameter on shear coefficient and elastic characteristics of shell and base is obtained.

Pseudosphere, shells, calculation of stability

УДК 543.42;543.31

Д. К. Кострин

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ЭКСПРЕСС-КОНТРОЛЯ СОСТАВА ВОДЫ ОПТИЧЕСКИМ СПЕКТРОМЕТРОМ ПРИ ИСПОЛЬЗОВАНИИ РАЗРЯДА В ЖИДКОСТИ

Рассмотрены конструкции ячеек, используемых для анализа состава воды по спектрам излучения разряда в жидкости. Определены оптимальные характеристики импульсного напряжения, дающие наилучшую чувствительность метода. Приведены основные недостатки систем экспресс-контроля состава воды на основе разряда в жидкости.

Оптический спектрометр, экспресс-контроль, состав воды, разряд в жидкости

В настоящее время наиболее распространенными являются химические и электрохимические методы анализа состава воды. Однако они достаточно дорогостоящие и требуют много времени для проведения анализа. Поэтому имеется большой интерес к разработке методов спектрального анализа химического состава воды, основанных на фотометрической регистрации эмиссионных спектров, образуемых различными веществами при нагревании их в канале электрического разряда. Такой метод мог бы обеспечить простой и надежный способ контроля состава водных растворов, приспособленный для применения в малогабаритных портативных системах.

Существует несколько подходов к созданию систем, обеспечивающих возникновение разряда в жидкости для возбуждения эмиссионных спектров содержащихся в ней ионов металлов [1]. Наилучшие условия для возникновения разряда имеют место в неоднородном поле с большим электрическим градиентом. При маломощном источнике возбуждения следует ожидать медленного развития разряда с прохождением промежуточной стадии образования газовых пузырьков и зажигания разряда внутри парогазовой смеси.