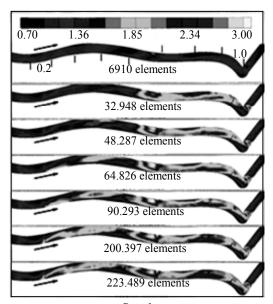


УДК 612.76.004.94

А. Л. Овсепьян, П. А. Квиндт, Е. В. Лебедева, Чонг Хыу Чан, Е. В. Садыкова Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Методика создания моделей внутренних органов в CAD-пакетах


Генерация виртуальных моделей с целью проведения стато-динамических исследований – сложная задача, которая требует системного подхода. Сегодня ее широко используют в предоперационном планировании и протезировании. В статье представлена методика создания биомеханических компьютерных моделей органов человека из мультипланарных реконструкций снимков МСКТ со сложной геометрией и их последующим исследованием в САD-пакетах.

Предоперационное планирование, протезирование, САПР, КТ, MCKT, 3D-модель, SolidWorks, ScanTo3D

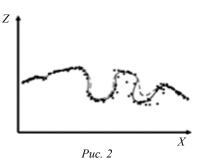
В последние годы технологии прототипирования представили новые возможности в визуализации сложных анатомических структур с помощью генерации виртуальных моделей, которые широко используются в предоперационном планировании для выбора оптимальной стратегии хирургического вмешательства, для оценки реакций тканей на воздействие сред, динамики жидкостей в полых органах, и в протезировании [1]. Существует специализированное программное обеспечение, позволяющее получать мультипланарные реконструкции реальных органов и там же проводить линейный статический анализ. Но когда встает вопрос о динамическом нелинейном анализе полых органов, возникает ряд сложностей, которые преодолеваются только комплексным подходом [2]-[3]. Поэтому целью исследований стала разработка методики исследования внутренних органов в цифровом формате и минимизация времени решения линейных и нелинейных задач CAD-пакетами и искажений геометрии в модели внутреннего органа.

Обзор существующих методик. Анализ литературы привел к выводу, что в большинстве случаев предоперационного планирования используют реконструкции анатомических структур из снимков мультиспиральной компьютерной томографии (МСКТ), которые затем разбивают на симплексы и импортируют как STL-файлы в CAD-пакеты для анализа [4]–[5]. Подобные методы позволяют

осуществить, например, анализ тканей на деформацию. А в случаях с исследованием гемодинамики (с учетом влияния потока на ткани) больших участков кровеносной системы приходится упрощать геометрию, уменьшая количество узлов симплексов, что приводит к интерференциям поверхностей [6] в точках бифуркаций и снижает адекватность таких моделей [3]. Необходимость уменьшения числа узлов возникает из-за ограниченных вычислительных мощностей компьютера.

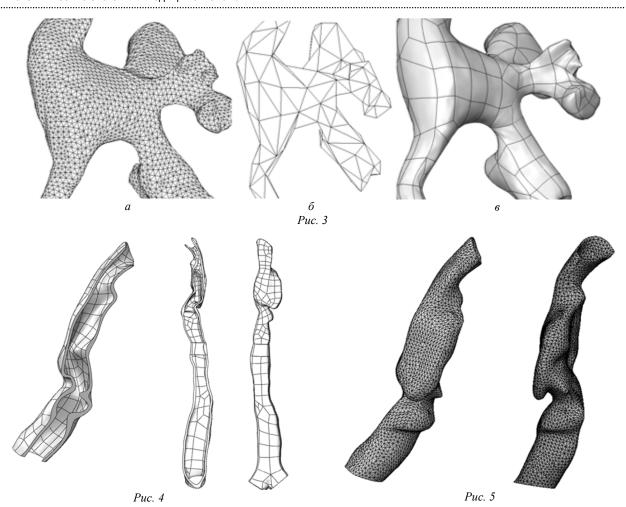
Puc. 1

На рис. 1 представлены участки артерии, полученной с помощью мультипланарной реконструкции снимков МСКТ, и стоит обратить внимание на различия в эпюрах при разном количестве элементов сетки. В [3] приведено исследование о влиянии числа узлов на качество анализа анатомических структур и сделан вывод: если погрешность измерения в 10 % приемлема, то сетки из 150 000–200 000 узлов будет достаточно. Но даже такое число симплексов вызовет дефицит вычислительных мощностей компьютера.


Методика. В ходе исследования гидродинамики почечной лоханки в норме и при патологии была разработана методика проведения исследования внутреннего органа, которая, согласно нашей гипотезе, позволяет воссоздать его виртуальную модель и дает возможность проведения конечно-элементного анализа в условиях ограниченных вычислительных мощностей с минимальным искажением геометрии модели органа. Методика проведения исследований внутренних органов:

- 1) получение снимков МСКТ формата DICOM;
 - 2) мультипланарная реконструкция;
- 3) сегментация, интерполяция и триангуляция области для создания STL-файла;
- 4) подготовка сетки и ее фильтрация для импорта в SolidWorks;
- 5) импорт и воссоздание топологии модели в SolidWorks ScanTo3D;
- 6) определение и установка свойств тканей и постановка граничных условий;
- 7) импорт в CAD/CAE-пакет для нелинейного динамического или линеаризованного анализа.

Мультипланарная реконструкция полученных снимков осуществлена с помощью программы DICOM-viewer. В ней же происходит сегментация, интерполяция и триангуляция нужной области исследования. В результате получается STL-модель, состоящая из симплексов, включая артефакты, возникшие при сегментации, что делает невозможным корректный анализ такой модели в CAD-пакетах. Чтобы отфильтровать артефакты предлагается использовать сглаживание Лапласа в программе MeshLab [7]–[8]. После фильтрации, необходимо импортировать STL-файл в SolidWorks как облако точек.


Статический и динамический анализ в САDпакетах построен на решении дифференциальных уравнений методом конечных элементов, что подразумевает создание сетки конечных элементов. А в условиях ограниченных вычислительных мощностей решение этих уравнений ограничивается малым числом конечных элементов, что искажает результаты исследования [9]. Для решения этих проблем предлагается прибегнуть к использованию утилиты ScanTo3D [10]. Она позволяет создать из массивного облака точек наиболее быструю и качественную реконструкцию поверхности путем включения дополнительных точек, как ограничений интерполяции. Работа утилиты построена, предположительно, на основе модифицированного алгоритма восстановления поверхности Пуассона — так называемом алгоритме Хоппе [11].

Интерес к работе вызван тем, что ограничения интерполяции не изменяют структуру объекта, так как модифицированная линейная система сохраняет ту же дискретизацию конечных элементов. На рис. 2 сверху изображен отсканированный объект, снизу — сплайн-интерполяция точек с помощью традиционной реконструкции Пуассона (штриховая) и алгоритма Хоппе (сплайн). Преимуществом использования ScanTo3D состоит так же в том, что из формата STL, объект конвертируется в файл формата SLDPRT, что делает анализ в CAE-пакете более корректным. Кроме того, для чтения STL-файла, утилита не требует снижения числа узлов симплексов.

Результаты. На рис. 3 представлены три поверхности почечной лоханки: исходная в формате STL (рис. 3, a), упрощенная в MeshLab STL (рис. 3, δ) и воссозданная из исходного файла топологическая сеть (рис. 3, a). Помимо почечной лоханки была произведена реконструкция верхних дыхательных путей для симуляции патологического процесса – апноэ сна [4].

Формат файла	STL	SLDPRT
Решатель	SolidWorks Simulation	SolidWorks Simulation
Тип сетки	Сетка на твердом теле	Сетка на твердом теле
Используемое разбиение	Сетка на основе кривизны	Стандартная сетка
Качество сетки	Высокое	Высокое
Количество узлов	58 332	20 330
Всего элементов	32 028	10 327
Время для завершения сетки, с	44	20

Было принято решение сравнить скорость создания сетки конечных элементов исходного файла формата STL и файла SLDPRT, полученного с помощью методики, описанной ранее (рис. 4). Решателем выбран пакет SolidWorks Simulation. На рис. 5 изображена модель верхних дыхательных путей со сгенерированной сеткой конечных элементов, а в таблице приведены параметры этой сетки.

В результате Solid Works Simulation сгенерировал сетку конечных элементов в два раза быстрее для файла, прошедшего предварительную обработку по разработанной методике. Однако методика имеет ряд недостатков: для реализации требуется более двух CAD-пакетов и дополнительный набор утилит; с помощью утилиты

ScanTo3D полностью не решена проблема интерференции поверхности точках бифуркаций.

Определяющим фактором времени решения нелинейных динамических и линеаризованных задач в САD/САЕ-пакетах является количество конечных элементов сетки, и чем больше элементов она содержит, тем дольше будет проводиться анализ. В связи со сложной геометрией органов человека, часто приходится упрощать и вводить допущения геометрии в виртуальные модели, что негативно влияет на результаты исследований. Разработанная методика позволяет проводить различные виды исследований модели внутренних органов в условиях ограниченных вычислительных мощностей, минуя снижение числа узлов симплексов и сокращая время проведения исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Clinical applications of physical 3D models derived from MDCT data and created by rapid prototyping / S. J. Esses, P. Bergman, A. I. Bloom, J. Sosna // AJR Am J Roentgenol, 2011. P. 196W683-8.
- 2. Prakash S., Ethier C. R. Requirements for Mesh Resolution in 3D Computational Hemodynamics // J. of Biomech. Engin., 2001. Iss. 123(2). P. 134.
- 3. Computational Fluid Dynamics Analysis on the Upper Airways of Obstructive Sleep Apnea Using Patient / Y. Fan LKC, M. M. Chong, H. D. Chua, K. W. Chow, C. H. Liu // Specific Models IAENG Intern. J. of Computer Science. 2011. 38:4, IJCS_38_4_10.
- 4. Diagnosis of gastric cancer with MDCT using the water-filling method and multiplanar reconstruction: CT-histologic correlation / K. Shimizu, K. Ito, N. Matsunaga, A. Shimizu, Y. Kawakami // AJR Am. J. Roentgenol. 2005. Iss. 185(5). P. 1152–1158.
- 5. Quarteroni A., Veneziani A. Computational vascular fluid dynamics: problems, models and methods //

- Computing and Visualization in Science 2000. Visual Sci. 2. P. 163–197.
- 6. J. Vollmer R. M., Müller H. Improved Laplacian Smoothing of Noisy Surface Meshes // Computer Graphics Forum. 1999. Sept. P. 131–138.
- 7. MeshLab: an Open-Source Mesh Processing Tool / Cignoni P., M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia // Eurographics Italian Chapter Conf. 2008.
- 8. Aksenov A., Pokhilko V. Overcoming of barrier between cad and cfd by modified finite volume method. 1998.
- 9. Ancuta P-N. 3D Object Modeling and Visualization Software for Surgery Preoperative Plan / Int. Conf. 6th Workshop on Eur. Sc. and Ind. Collaboration on promoting Advanced Technologies in Manufacturing WESIC'08
- 10. Kazhdan M., Hoppe H. Screened poisson surface reconstruction // ACM Transactions on Graphics. 2013. Iss. 32(3). P. 1–13.

A. L. Ovsepian, P. A. Kvindt, E. V. Lebedeva, Trong Huu Tran, E. V. Sadykova *Saint Petersburg Electrotechnical University «LETI»*

METHOD FOR CREATING MODELS OF INTERNAL BODIES IN CAD-PACKAGES

Generation of virtual models for the purpose of conducting static-dynamic research is a complex task that requires a systematic approach. The work presents a technique for creating biomechanical computer models of human organs from multiplanar reconstructions of MDCT images with complex geometry and their subsequent investigation in CAD/CAE packages.

Preoperative planning, prosthetics, CAD, CT, MDCT, 3D-model, SolidWorks, ScanTo3D

УДК 615.471:617.7

Е. П. Попечителев

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Восстановление группы операторов после интенсивной работы

Проведена классификация известных методов, используемых для восстановления работоспособности человека, и показано, что они не позволяют осуществить быстрое восстановление рабочего состояния у малой группы операторов биотехнических систем. Предложено использовать для этих целей специальные биотехнические системы игрового типа, в которых реализуется метод графических символов, отображаемых на экране монитора в виде изображения игрового сюжета. Особенностью символов является раздельное управление их основными параметрами по желанию исследователя и в зависимости от действий группы. Они позволяют быстро изменять содержание теста при сохранении возможности точной фиксации ответных действий и оценить важные характеристики всей группы как единого системного образования.

Работоспособность малой группы операторов, методы восстановления работоспособности, биотехническая тестовая система, метод графического символа, игровая стратегия

.....

Одну из важных проблем сохранения работоспособности человека-оператора, выполняющего функции управления сложными информационными системами, представляет восстановление его рабочих функций после интенсивной предыдущей работы. К концу рабочего периода боль-