

УДК 534.232

Б. Г. Степанов Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Сопротивление излучения пьезоцилиндров преобразователя волноводного типа при излучении им в полубесконечные пространства

Для водозаполненных соосно расположенных пьезоцилиндров с фазированным возбуждением по типу бегущей волны, образующих преобразователь волноводного типа, излучающего в полупространства, приводятся и анализируются результаты расчетов частотных характеристик собственного, взаимного и полного сопротивления излучения. Показано влияние на эти характеристики, а также на частотные зависимости амплитуд возбуждающих электрических напряжений, волн, отраженных от фронтальной и тыльной апертур преобразователя волноводного типа.

Гидроакустический преобразователь, волновод, излучение в полупространство, сопротивление излучения

Для обеспечения заданных полевых характеристик, формируемых гидроакустическими антеннами, важное значение имеет информация о входных импедансах образующих их пьезопреобразователей, и в частности – об их сопротивлении излучения. Эта информация позволяет нужным образом скорректировать амплитуды и фазы электрических напряжений, подаваемых на пьезопреобразователи [1], в том числе и на пьезоцилиндры, образующие преобразователь волноводного типа (ПВТ), в зависимости от вида формируемой им амплитудно-частотной характеристики (АЧХ) звукового давления [2], [3]. В работе [3] рассматривалось влияние на частотные зависимости активной и реактивной составляющих сопротивления излучения параметров пьезоцилиндров ПВТ при их возбуждении в соответствии с решением задачи синтеза, излучающего внутренней водозаполненной полостью через торцевые апертуры в полубесконечные волноводы, что в определенной мере предполагает идентичность работы ПВТ в составе антенны. Изменение характера нагруженности излучающих апертур ПВТ, очевидно, будет сказываться на виде частотных зависимостей сопротивлений излучения его пьезоцилиндров и характере их возбуждения. В данной статье рассмотрим иной, чем в [3], предельный случай нагруженности излучающих апертур ПВТ, а именно – его работу при излучении водозаполненными апертурами в граничащие с ними полубесконечные пространства, а также связанные с этим изменения в характере нагруженности и возбуждении пьезоцилиндров.

Принцип построения ПВТ и схема распространения падающих и отраженных от излучающих апертур звуковых волн показаны на рис. 1. Собственно ПВТ, подобно [2]-[4], представляет собой набор соосно расположенных идентичных пьезоцилиндров с номерами от 1 до N, разделенных между собой акустически гибкими прокладками и возбуждаемых электрическими напряжениями $U_i = U_{mi}(\omega)e^{j\psi_i(\omega)}$, где $U_{mi}(\omega)$ и $\psi_i(\omega)$ – их амплитуды и фазы i = 1, 2, ..., N. Вся внутренняя полость ПВТ и пьезоцилиндров радиуса а заполнена жидкостью (водой) и непосредственно граничит с внешними водными полупространствами, в которые и происходит излучение. Внешняя боковая поверхность пьезоцилиндров и всего ПВТ – свободная.

Приборостроение и информационно-измерительные технологии

При определении собственного и взаимных сопротивлений излучения для пьезоцилиндров, будем считать заданной радиальную компоненту колебательной скорости на их внутренней боковой поверхности: $v_i = v_{ai}(\omega)e^{j\psi_i(\omega)}$, где $v_{ai}(\omega)$ и $\psi_i(\omega)$ – амплитуда и фаза; пьезоцилиндры совершают чисто радиальные колебания. Для решения задачи воспользуемся формулами, полученными для одиночного пьезоцилиндра [5], излучающего через торцевые апертуры в полубесконечные волноводы. При этом для удобства последующих преобразований выражения для звукового давления, создаваемого *i*-м пьезоцилиндром соответственно справа от него $p_i^{(1)}(z,r)$, в его центральной области $p_i^{(2)}(z,r)$ и слева от него $p_i^{(3)}(z, r)$, запишем в следующем виде:

$$p_{i}^{(1,5)}(z,r) =$$

$$= -2z_{0}v_{i}k_{0}a\sum_{n=0}^{\infty}\frac{J_{0}(\lambda_{n}r)\sin(k_{n}l/2)e^{\pm jk_{n}z}}{J_{0}(\beta_{n})(k_{n}a)^{2}}; \quad (1)$$

$$p_{i}^{(2)}(z,r) = jz_{0}v_{i}\left[-\frac{J_{0}(k_{0}a)}{J_{1}(k_{0}a)} + \frac{1}{2k_{0}a\sum_{n=0}^{\infty}\frac{J_{0}(\lambda_{n}r)\cos(k_{n}z/2)e^{jk_{n}l/2}}{J_{0}(\beta_{n})(k_{n}a)^{2}}\right], \quad (2)$$

где z_0 – удельный импеданс жидкости (воды), заполняющей внутреннюю полость ПВТ; $k_n = \sqrt{k_0^2 - \lambda_n^2}$ при $k_0 > \lambda_n$ и $k_n = j\sqrt{k_0^2 - \lambda_n^2}$ при $k_0 < \lambda_n$ n = 1, 2, ...; $k_0 = \omega/c_0$; c_0 – скорость звука в жидкости; $\lambda_n = \beta_n/a$; β_n – корень уравнения $J_1(\beta_n) = 0$. Знак «+» в показателе экспоненты формулы (1) соответствует излучению вправо (индекс 1), знак «-» – излучению влево (индекс 3). При проведении вычислений был принят временной множитель $e^{-j\omega t}$. С учетом результатов работы [4] запишем выражения для звуковых волн, отраженных от фронтальной и тыльной апертур преобразователя волноводного типа и воздействующих на *i* -й пьезоцилиндр, в виде

$$p_{i0}^{(1,3)}(z,r) = -2z_0 v_i k_0 a \times \\ \times \sum_{n=0}^{\infty} R_{in}^{(F,T)} \frac{e^{\pm j 2k_n z_i^{(1,3)}} J_0(\lambda_n r) \sin(k_n l/2)}{J_0(\beta_n) (k_n a)^2} e^{\mp j k_n z},$$
(3)

где $R_{in}^{(F,T)}$ – коэффициенты, определяемые из системы уравнений [4] для заданных параметров преобразователя волноводного типа; индексы (F) и (T) здесь соответствуют отражению от правой (фронтальной) и левой (тыльной) апертур ПВТ; $z_i^{(1)} = d(N-i) + l/2$; $z_i^{(3)} = -[d(i-1)+l/2]$. Суммарные фазовые сдвиги для звуковых волн, воздействующих на *i*-й пьезоцилиндр (рис. 1, стрелки со сплошными линиями), определяются показателями экспонент $j2k_nz_i^{(1)}$ и $-j2k_nz_i^{(3)}$.

При определении собственного и взаимного сопротивлений излучения удобно воспользоваться формулой ([6], [7]) $Z_s = -\int_s \tilde{p}_{\Sigma} D_n ds / \tilde{v}$, где \tilde{p}_{Σ}

и \tilde{v} – комплексные амплитуды суммарного звукового давления и колебательной скорости точки приведения; D_n – приведенная скорость элемента поверхности ds. Для *i*-го пьезоцилиндра ПВТ интегрирование проводится по внутренней его боковой поверхности; $D_n = 1$; $\tilde{v} = v_i$. Тогда для собственного сопротивления излучения *i*-го пьезоцилиндра $Z_{ii}^{(S)}$ с учетом осевой симметрии и

звуковых давлений, создаваемых волнами, отраженными от фронтальной и тыльной апертур ПВТ, можно записать:

$$Z_{ii}^{(S)} = -\frac{2\pi a}{v_i} \times \int_{-l/2}^{l/2} \left[P_i^{(2)}(z,a) + P_{i0}^{(1)}(z,a) + P_{i0}^{(3)}(z,a) \right] dz.$$
(4)

Выполнив интегрирование в (4), получим:

$$Z_{ii}^{(S)} = Z_{ii} + Z_{ii}^{(R)} = Z_{ii} + z_0 S \frac{4k_0 a}{l/a} \times \sum_{n=0}^{\infty} \left[R_{in}^{(F)} e^{j2k_n z_i^{(1)}} + R_{in}^{(T)} e^{-j2k_n z_i^{(3)}} \right] \frac{\sin^2 (k_n l/2)}{(k_n a)^3},$$
(5)

где

$$Z_{ii} = jz_0 S \left[\frac{J_0(k_0 a)}{J_1(k_0 a)} - \frac{4k_0 a}{l/a} \sum_{n=0}^{\infty} \frac{\sin(k_n l/2) e^{jk_n l/2}}{(k_n a)^3} \right]$$

– собственное сопротивление излучения *i*-го пьезоцилиндра без учета влияния волн отраженных от излучающих апертур ПВТ, определенное в [3]; слагаемое $Z_{ii}^{(R)}$ – учитывает влияние отраженных волн; $S = 2\pi a l$. Как следует из формулы (5), величина Z_{ii} не зависит от местоположения (номера *i*) пьезоцилиндра, а дополнительное слагаемое $Z_{ii}^{(R)}$ – зависит.

В качестве примера для ПВТ, имеющего значения структурных параметров: N = 10; l/a = 0.5; d/a = 0.575, на рис. 2 приведены нормированные к величине z_0S результаты расчета активной

Re z_{ii} , Re $z_{ii}^{(R)}$ и реактивной Im z_{ii} , Im $z_{ii}^{(R)}$ компонент для составляющих собственного сопротивления излучения Z_{ii} и $Z_{ii}^{(R)}$, где $Z_{ii} = z_0 S z_{ii}$ и $Z_{ii}^{(R)} = z_0 S z_{ii}^{(R)}$. Номера кривых здесь соответствуют: $l - \text{Re } z_{ii}$ и Im z_{ii} , которые не зависят от номера пьезоцилиндра i; 2 - i = 1 и 10; 3 i = 3 и 8; 4 – i = 5 и 6. В рассматриваемом диапазоне частот активная и реактивная компоненты собственного сопротивления излучения *i*-го пьезоцилиндра Z_{ii}, а также его модуль, сравнительно слабо зависят от частоты (волнового размера $k_0 a$). Что касается составляющей сопротивления излучения $Z_{ii}^{(R)}$, учитывающей влияние отраженных волн, то для пьезоцилиндров, одинаково удаленных от излучающих апертур ПВТ, наблюдается один и тот же ход кривых Re $z_{ii}^{(R)}$ и Im $z_{ii}^{(R)}$, который носит осциллирующий характер. Причем, по мере увеличения частоты влияние волн, отраженных от излучающих апертур ПВТ, заметно ослабевает, особенно при $k_0 a > 2$. Наиболее частые осцилляции в поведении активной и реактивной компонент $Z_{ii}^{(R)}$ наблюдаются для пьезоцилиндров, расположенных ближе к излучающим апертурам.

Для определения взаимного сопротивления излучения $Z_{ik}^{(S)}$ с учетом волн, отраженных от излучающих апертур ПВТ, запишем выражения для звуковых давлений воздействующих на *i*-й пьезоцилиндр со стороны *k*-го пьезоцилиндра (см. рис. 1, стрелки со штриховыми линиями; k = 1; 2; ...; N) в следующем виде:

$$p_{k}^{(1,3)}(z,r) = -2z_{0}v_{k}k_{0}a \times \sum_{n=0}^{\infty} \frac{J_{0}(\lambda_{n}r)\sin(k_{n}l/2)e^{jk_{n}d|i-k|}e^{\pm jk_{n}z}}{J_{0}(\beta_{n})(k_{n}a)^{2}}, \quad (6)$$

$$p_{k0}^{(1,3)}(z,r) = -2z_{0}v_{k}k_{0}a \times \sum_{n=0}^{\infty} R_{kn}^{(F,T)} \frac{e^{\pm jk_{n}\left(z_{k}^{(1,3)} + z_{i}^{(1,3)}\right)}J_{0}(\lambda_{n}r)\sin(k_{n}l/2)}{J_{0}(\beta_{n})(k_{n}a)^{2}} \times \sum_{n=0}^{\infty} R_{kn}^{(F,T)} \frac{e^{\pm jk_{n}\left(z_{k}^{(1,3)} + z_{i}^{(1,3)}\right)}J_{0}(\lambda_{n}r)}{Z_{kn}\left(z_{k}^{(1,3)} + z_{i}^{(1,3)}\right)}J_{0}(\lambda_{n}r)}$$

 $\times e^{\mp jk_n z}$

(7)

Выражение (6) определяет непосредственное воздействие k-го пьезоцилиндра на i-й пьезоцилиндр ($i \neq k$), причем в зависимости от их взаимного расположения при расчете $Z_{ik}^{(S)}$ следует использовать в случае k > i выражение для $p_{k}^{(3)}(z,r)$ с экспоненциальным множителем в виде $e^{-jk_n z}$, а в случае k < i – выражение для $p_{k}^{(1)}(z,r)$ с экспоненциальным множителем в виде e^{jk_nz} . В обоих случаях получается один и тот же результат для взаимного сопротивления излучения $Z_{ik} = Z_{ki}$ без учета влияния отраженных волн от апертур ПВТ [3]. Поэтому фазовый сдвиг в выражении (6) берется в виде $jk_n d|i-k|$. Для волн отраженных от излучающих апертур ПВТ, с учетом принятых значений их координат относительно *i*-го и *k*-го пьезоцилиндров, фазовые сдвиги в выражении (7) соответственно будут равны: $jk_n(z_k^{(1)} + z_i^{(1)}) = jk_n[d(2N - k - i) + l]$ и $-jk_n\left(z_k^{(3)}+z_i^{(3)}\right)=jk_n\left[d\left(k+i-2\right)+l\right]$. С учетом указанных положений определим выражение для взаимного сопротивления излучения $Z_{ik}^{(S)}$ в следующем виде:

$$Z_{ik}^{(S)} = -\frac{2\pi a}{v_i} \times \int_{-l/2}^{l/2} \left[P_k^{(1,3)}(z,a) + P_{k0}^{(1)}(z,a) + P_{k0}^{(3)}(z,a) \right] dz.$$
(8)

При выполнении интегрирования в (8) будем предполагать равенство амплитуд и фаз колебательных скоростей. Их различие будет учтено при определении полного сопротивления излучения i-го пьезоцилиндра Z_{Si} . Выполнив интегрирование в (8), получим:

$$Z_{ik}^{(S)} = Z_{ik} + Z_{ik}^{(R)} = Z_{ik} + z_0 S \frac{4k_0 a}{l/a} \times \\ \times \sum_{n=0}^{\infty} \left[R_{kn}^{(F)} e^{jk_n \left(z_k^{(1)} + z_i^{(1)} \right)} + R_{kn}^{(T)} e^{-jk_n \left(z_k^{(3)} + z_i^{(3)} \right)} \right] \times \\ \times \frac{\sin^2 \left(k_n l/2 \right)}{\left(k_n a \right)^3}, \tag{9}$$

где
$$Z_{ik} = z_0 S \frac{4k_0 a}{l/a} \sum_{n=0}^{\infty} \frac{\sin^2 (k_n l/2) e^{j \kappa_n a |l-\kappa|}}{(k_n a)^3}$$
 -

взаимное сопротивление излучения без учета влияния волн, отраженных от излучающих апертур ПВТ, определенное в [3]; $Z_{ik}^{(R)}$ – слагаемое, определяющее влияние отраженных волн. Выражение (9) определяет взаимное влияние пьезоцилиндров друг на друга, обусловленное только геометрией их расположения. Здесь оба слагаемых взаимного сопротивления излучения $Z_{ik}^{(S)}$ зависят от взаимного расположения *i*-го и *k*-го пьезоцилиндров, причем с учетом симметрии значений коэффициентов $R_{kn}^{(F)}$ и $R_{kn}^{(T)}$ [4] для пьезоцилиндров, одинаково расположенных относительно фронтальной или тыльной излучаюцих апертур, результаты расчетов и соответствующие им кривые будут совпадать.

На рис. 3 и 4 для ПВТ, имеющего те же значения параметров, что и для рис. 2, приведены нормированные к величине *z*₀*S* частотные зависимости активной Re z_{ik} , Re $z_{ik}^{(R)}$ и реактивной Im z_{ik} , Im $z_{ik}^{(R)}$ компонент для составляющих взаимного сопротивления излучения $Z_{ik} = z_0 S z_{ik}$ и $Z_{ik}^{(R)} = z_0 S z_{ik}^{(R)}$. Для удобства оценки характера влияния k-го пьезоцилиндра здесь в качестве базового принят пьезоцилиндр с номером i = 1. Номера кривых для обоих рисунков соответству-HOT: 1 - i = 1, k = 3; 2 - i = 1, k = 5; 3 - i = 1, k = 7;4 - i = 1, k = 10. Следует отметить, что несмотря на осциллирующий характер поведения активной и реактивной компонент Re zik и Im zik модуль $|z_{ik}|$ для разных значений *i* и *k* оказывается слабо зависящим от частоты, а его значения и вид частотной зависимости для разных *l/a* почти совпадают со значениями и видом частотной зависимости модуля собственного сопротивления

Х

излучения $|z_{ii}|$, которая легко просматривается из данных, представленных на рис. 2. Небольшие отличия начинают проявляться в области частот $k_0a > 3$. Что касается поведения составляющей взаимного сопротивления излучения $Z_{ii}^{(R)}$, учитывающей отраженные от излучающих апертур волны, то здесь осциллирующий характер частотной зависимости сохраняется и для модуля $|z_{ik}^{(R)}|$.

Полное сопротивление излучения Z_{Si} для *i*-го пьезоцилиндра определяется с учетом взаимодействия по полю с другими пьезоцилиндрами, имеющими в общем случае различные значения комплексных амплитуд колебательных скоростей $v_k = v_{ak}(\omega)e^{j\psi_k(\omega)}$. Тогда в соответствии с положениями работ [1], [3] выражение для Z_{Si} может быть записано в следующем виде:

$$Z_{Si} = Z_{i1}^{(S)} \frac{v_1}{v_i} + Z_{i2}^{(S)} \frac{v_2}{v_i} + \ldots + Z_{ii}^{(S)} + \ldots + Z_{iN}^{(S)} \frac{v_N}{v_i},$$

где $Z_{ii}^{(S)}$ – собственное и $Z_{ik}^{(S)}$ – взаимные сопротивления излучения.

В предположении, что возбуждение пьезоцилиндров ПВТ осуществляется в соответствии с решением задачи синтеза [3], на рис. 5 приведены частотные зависимости для модуля полного сопротивления излучения $|z_{Si}| = |Z_{Si}|/z_0 S$ с учетом влияния отраженных волн от излучающих апертур ПВТ (рис. 5, а) и без учета влияния всех отражений (рис. 5, б), т. е. при излучении ПВТ в условные волноводы [3]. В обоих случаях предполагается, что амплитуды колебательной скорости пьезоцилиндров равны по величине и не зависят от частоты, т. е. $v_{ai}(\omega) = v_a = \text{const}$, а их фазовые множители обеспечивают режим бегущей волны от пьезоцилиндра с номером 1 к пьезоцилиндру с номером N, т. е. $\psi_i(\omega) = k_0 d(i-1)$. Структурные параметры ПВТ здесь приняты теми же, что и для рис. 2-4. Номера кривых здесь соответствуют: 1 i = 1; 2 - i = 4; 3 - i = 7; 4 - i = 10. В случае отсутствия волн отраженных от излучающих апертур ПВТ, достаточно хорошо просматривается тенденция увеличения значений |z_{Si}| (активной составляющей сопротивления излучения [3]) с ростом номера пьезоцилиндра і. В целом эта

Для задачи синтеза [3] систему уравнений, описывающих колебательный процесс *N* пьезоцилиндров, образующих ПВТ, можно записать в виде

$$\sum_{k=1}^{N} Z_{ik}^{*} e^{jk_0 d(k-1)} = N_0 U_i / v_a.$$
(10)

В выражении (10) приняты следующие обозначения: $Z_{ik}^* = Z_{ik}^{(S)}; i \neq k; \quad Z_{ii}^* = Z_{ii}^{(S)} + Z_M; \quad Z_M = r_{Si}(1-\eta)/\eta - j Q_M \left[n_{0k}^2 (k_0 a)^2 - 1 \right] / n_{0k} k_0 a$ – механический импеданс пьезоцилиндра; $N_0 = N_T / z_0 S; \quad N_T = 2\pi d_{31} l / S_{11}^{(E)}$ – коэффициент электромеханической трансформации; U_i – комплексная амплитуда электрического напряжения; Q_M – механическая добротность пьезоцилиндра; $n_{0k} = c_0/c_k; r_{Si}$ и x_{Si} – нормированные активная и реактивная составляющие полного сопротивления излучения; η – механоакустический КПД; d_{31} – пьезомодуль; S_{11}^E – упругая податливость; c_k – скорость звука в материале пьезоцилиндра.

Без введения фазового сдвига, определяющего режим бегущей волны, полное механическое сопротивление *i* -го пьезоцилиндра с учетом влияния отраженных от излучающих апертур волн опреде-

ляется выражением $Z_{Mi} = Z_{ii}^{(S)} + Z_M + \sum_{k=1}^N Z_{ik}^{(S)}$.

На рис. 6 приведены нормированные частотные зависимости модуля Z_{Mi} , где $Z_{Mi} = z_0 S z_{Mi}$, для ПВТ, имеющего следующие значения параметров: N = 10; l/a = 0.5; d/a = 0.575; $Q_M = 3$; $n_{0k} = 0.52$; $\eta = 0.7$. Здесь, ввиду симметрии значений коэффициентов $R_{kn}^{(F)}$ и $R_{kn}^{(T)}$ [4], для одинаково удаленных от излучающих апертур пьезоцилиндров будет наблюдаться одинаковый ход кривых, номера которых соответствуют: l - i = 1 и 10; 2 - i = 3 и 8; 3 - i = 5 и 6. Как видно, в данном случае определяющим является влияние механического импеданса пьезоцилиндра Z_M , что приводит к сравнительно слабой зависимости как модуля, так и составляющих импеданса Z_{Mi} от места расположения пьезоцилиндра в структуре ПВТ.

Учет возбуждения пьезоцилиндров ПВТ в соответствии с формированием режима бегущей волны отражается на виде частотной зависимости как полного механического сопротивления, которое для задачи синтеза [3] определяется левой частью выражения (10), так и амплитуды возбуж-

дающего электрического напряжения, которое в этом случае также пропорционально модулю: $U_{mi} \sim \left| \sum_{k=1}^{N} Z_{ik}^{*} e^{jk_0 d(k-1)} \right|$. В качестве примера на

рис. 7 приведены частотные зависимости амплитуд $U_{mi} = |U_i|$ возбуждающих электрических напряжений для пьезоцилиндров ПВТ, имеющего значения параметров такие же, как для рис. 6, соответственно с учетом влияния отраженных волн от излучающих апертур ПВТ (рис. 7, *a*) и без учета влияния всех отражений (рис. 7, б). При выполнении расчетов здесь предполагалось, что масштабный множитель $N_0/v_a = 1$. Номера кривых здесь соответствуют: 1 - i = 1; 2 - i = 4; 3 i = 7; 4 - i = 10. Отмечавшиеся ранее в [2], [3] рост амплитуд возбуждающих электрических напряжений с увеличением номера пьезоцилиндра *i*, а также зависимость этих амплитуд от частоты в виде полосового фильтра с увеличивающимся коэффициентом затухания (рис. 7, б), в целом просматривается и для случая, когда учитывается влияния волн, отраженных от излучающих апертур ПВТ (рис. 7, а). Однако в данном случае

указанные тенденции проявляются уже не в таком явном виде.

В заключение следует отметить, что исследования, выполненные в данной работе и в [4], в целом согласуются с ранее полученными результатами для модели ПВТ, излучающего в условные волноводы [3]. Изменение структурных параметров ПВТ N и l/a, d/a приводит к соответствующему изменению его суммарной ллины L = (N-1) d + l, что отражается, соответственно, на большем или меньшем количестве осцилляций в ходе кривых частотных зависимостей, например для Z_{Si} и U_{im} , но принципиально не сказывается на их основных закономерностях. Полученные результаты могут быть использованы при рассмотрении вопросов, связанных как с индивидуальной работой ПВТ, так и при работе ПВТ в составе гидроакустических антенн, когда возникает необходимость возбуждения ПВТ различными видами сигналов, а также при сканировании характеристик направленности этих антенн.

СПИСОК ЛИТЕРАТУРЫ

1. Смарышев М. Д., Добровольский Ю. Ю. Гидроакустические антенны. Л.: Судостроение, 1984. 304 с.

2. Малахов В. Б., Степанов Б. Г. О построении высокоэффективных сверхширокополосных гидроакустических преобразователей // Тр. VI междунар. конф. ГА-2002 «Прикладные технологии гидроакустики и гидрофизики». СПб., 2002. С. 28–292.

3. Степанов Б. Г. Сверхширокополосный гидроакустический преобразователь волноводного типа. Задача синтеза // Изв. СПбГЭТУ «ЛЭТИ». 2013. № 3. С. 87–96.

4. Степанов Б. Г. Об излучении одиночным преобразователем волноводного типа через его водозаполненные апертуры в граничащие с ними полубесконечные пространства // Изв. СПбГЭТУ «ЛЭТИ». 2015. № 4. С. 68–76.

5. Степанов Б. Г., Теплякова А. В. Об излучении водозаполненного пьезоцилиндра через торцевые апертуры в волновод // Изв. СПбГЭТУ «ЛЭТИ». 2011. № 9. С. 89–95.

6. Шендеров Е. Л. Излучение и рассеяние звука. Л.: Судостроение, 1989. 304 с.

7. Лепендин Л. Ф. Акустика. М.: Высш. шк, 1978. 448 с.

B. G. Stepanov

Saint-Petersburg state electrotechnical university «LETI»

RADIATION IMPEDANCE OF PIEZOELECTRIC CYLINDERS OF THE TRANSDUCER WAVEGUIDE TYPE AT RADIATION BY IT IN THE SEMI-INFINITE SPACES

For water filled coaxially located piezoelectric cylinders with the phased excitation as the running wave, forming the transducer of waveguide type, radiating in semi-infinite spaces, results of calculations of frequency characteristics of own, mutual and full radiation impedance are resulted and analyzed. Influence on these characteristics, and also – on frequency dependences of amplitudes of exciting electric pressure, the waves reflected from face-to-face and back apertures of the transducer of waveguide type is shown.

Hydroacoustic transducer, guide, radiation in semi-infinite space, radiation impedance

УДК 620.179.16

К. Е. Аббакумов, М. Я. Пушилина Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

Волновые процессы на границах структурированных сред на примере двух моделей: поглощающей и мелкослоистой сред

Рассмотрен вопрос о том, как по значениям измеренных скоростей вычислить некоторые параметры среды, если известна ее модель. Здесь были рассмотрены две такие модели: модель поглощающей среды и модель мелкослоистой среды. Были проведены расчеты эффективно упругих параметров среды для модели мелкослоистой среды, которые были подставлены в уравнение Рэлея для нахождения эффективной скорости распространения волны в мелкослоистой среде сталь–графит. Расчеты проводились для трех комбинаций толщин слоев: 0.9/0.1; 0.5/0.5; 0.1/0.9 мм.

Волновые процессы, мелкослоистая среда, уравнение Рэлея, продольные и поперечные волны

Актуальность данной статьи обусловлена следующими обстоятельствами. Одно из направлений, которое развивается в дефектоскопии – ультразвуковая структурометрия. Ультразвук здесь помогает в том смысле, что оказывается, что значения скоростей для разных типов волн можно измерять с относительно высокой точностью [1]. Зная значения этих скоростей, их можно пересчитать в некоторые интересные для практических целей механические характеристики, а знание механических характеристик – важный эксплуатационный и производственный параметр для любых материалов.

Целью настоящей статьи является описание исследования волновых процессов на границах структурированных сред применительно к задачам акустических измерений физико-механических характеристик промышленных материалов.

Модель поглощающей среды. Когда среда однородна, то дисперсионное уравнение Рэлея известно по работе Викторова [2] и описывается формулой

$$\eta^{6} - 8\eta^{4} + 8(3 - 2\xi^{2})\eta^{2} - 16(1 - \xi^{2}) = 0, \quad (1)$$

$$\eta = k_{t}/k = c/c_{t},$$

$$\xi = k_{l}/k_{t} = c_{t}/c_{l}.$$

Здесь введены обозначения $\eta = k_t/k = c/c_t$; $\xi = k_l/k_t = c_t/c_l$, где c_t, c_l – фазовые скорости продольных и поперечных волн соответственно.

Коэффициент затухания – один из важнейших информативных параметров качества сред и материалов. Убыванию амплитуды рэлеевских волн